These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34413346)

  • 1. Costs of position, velocity, and force requirements in optimal control induce triphasic muscle activation during reaching movement.
    Ueyama Y
    Sci Rep; 2021 Aug; 11(1):16815. PubMed ID: 34413346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern.
    Cooke JD; Brown SH
    J Neurophysiol; 1990 Mar; 63(3):465-72. PubMed ID: 2329356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition from slow to ballistic movement: development of triphasic electromyogram patterns.
    Brown JM; Gilleard W
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):381-6. PubMed ID: 1773816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-joint rapid arm movements in normal subjects and in patients with motor disorders.
    Berardelli A; Hallett M; Rothwell JC; Agostino R; Manfredi M; Thompson PD; Marsden CD
    Brain; 1996 Apr; 119 ( Pt 2)():661-74. PubMed ID: 8800955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal control of antagonistic muscle stiffness during voluntary movements.
    Lan N; Crago PE
    Biol Cybern; 1994; 71(2):123-35. PubMed ID: 8068774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proprioceptive feedback during point-to-point arm movements is tuned to the expected dynamics of the task.
    Shapiro MB; Niu CM; Poon C; David FJ; Corcos DM
    Exp Brain Res; 2009 Jun; 195(4):575-91. PubMed ID: 19434401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.
    Kudo N; Choi K; Kagawa T; Uno Y
    Neural Comput; 2016 May; 28(5):950-69. PubMed ID: 26942751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trained slow tracking. I. Muscular production of wrist movement.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1213-27. PubMed ID: 4078615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of agonist and antagonist muscles in fast arm movements in man.
    Wierzbicka MM; Wiegner AW; Shahani BT
    Exp Brain Res; 1986; 63(2):331-40. PubMed ID: 3758250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cost of moving optimally: kinematic path selection.
    Kistemaker DA; Wong JD; Gribble PL
    J Neurophysiol; 2014 Oct; 112(8):1815-24. PubMed ID: 24944215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement-related phasic muscle activation. I. Relations with temporal profile of movement.
    Brown SH; Cooke JD
    J Neurophysiol; 1990 Mar; 63(3):455-64. PubMed ID: 2329355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Author Correction: Costs of position, velocity, and force requirements in optimal control induce triphasic muscle activation during reaching movement.
    Ueyama Y
    Sci Rep; 2021 Sep; 11(1):18564. PubMed ID: 34518639
    [No Abstract]   [Full Text] [Related]  

  • 19. Initial arm muscle activation in a planar ballistic arm movement with varying external force directions: a simulation study.
    Welter TG; Bobbert MF
    Motor Control; 2002 Jul; 6(3):217-29. PubMed ID: 12122217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Late agonist activation burst (PC) required for optimal head movement: a simulation study.
    Hannaford B; Stark L
    Biol Cybern; 1987; 57(4-5):321-30. PubMed ID: 3689840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.