These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34413439)

  • 1. Nanobubbles activate anaerobic growth and metabolism of Pseudomonas aeruginosa.
    Ito M; Sugai Y
    Sci Rep; 2021 Aug; 11(1):16858. PubMed ID: 34413439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J
    World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of d- and l-Lactate and Metabolic Cross-Feeding.
    Lin YC; Cornell WC; Jo J; Price-Whelan A; Dietrich LEP
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206167
    [No Abstract]   [Full Text] [Related]  

  • 4. Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids.
    Zhao F; Wu Y; Wang Q; Zheng M; Cui Q
    Microb Cell Fact; 2021 Sep; 20(1):185. PubMed ID: 34556134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhamnolipid-dependent spreading growth of Pseudomonas aeruginosa on a high-agar medium: marked enhancement under CO2-rich anaerobic conditions.
    Nozawa T; Tanikawa T; Hasegawa H; Takahashi C; Ando Y; Matsushita M; Nakagawa Y; Matsuyama T
    Microbiol Immunol; 2007; 51(8):703-12. PubMed ID: 17704632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions.
    Chayabutra C; Ju LK
    Appl Environ Microbiol; 2000 Feb; 66(2):493-8. PubMed ID: 10653709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pseudomonas aeruginosa proteome during anaerobic growth.
    Wu M; Guina T; Brittnacher M; Nguyen H; Eng J; Miller SI
    J Bacteriol; 2005 Dec; 187(23):8185-90. PubMed ID: 16291692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric Oxide, an Old Molecule With Noble Functions in Pseudomonas aeruginosa Biology.
    Toyofuku M; Yoon SS
    Adv Microb Physiol; 2018; 72():117-145. PubMed ID: 29778213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characteristics of carbohydrate metabolism of R-, S- i M-dissociants of Pseudomonas aeruginosa].
    Mil'ko ES; Krasil'nikova EN
    Mikrobiologiia; 1999; 68(2):211-4. PubMed ID: 10420400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of static growth and different levels of environmental oxygen on toxA and ptxR expression in the Pseudomonas aeruginosa strain PAO1.
    Gaines JM; Carty NL; Colmer-Hamood JA; Hamood AN
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2263-2275. PubMed ID: 16000716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin B12-mediated restoration of defective anaerobic growth leads to reduced biofilm formation in Pseudomonas aeruginosa.
    Lee KM; Go J; Yoon MY; Park Y; Kim SC; Yong DE; Yoon SS
    Infect Immun; 2012 May; 80(5):1639-49. PubMed ID: 22371376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen.
    Hassett DJ
    J Bacteriol; 1996 Dec; 178(24):7322-5. PubMed ID: 8955420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth.
    Filiatrault MJ; Picardo KF; Ngai H; Passador L; Iglewski BH
    Infect Immun; 2006 Jul; 74(7):4237-45. PubMed ID: 16790798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of Pseudomonas aeruginosa to form membrane-associated glucose dehydrogenase activity during anaerobic growth with nitrate.
    Hunt JC; Phibbs PV
    Biochem Biophys Res Commun; 1981 Oct; 102(4):1393-9. PubMed ID: 6797425
    [No Abstract]   [Full Text] [Related]  

  • 15. Monitoring microaerobic denitrification of Pseudomonas aeruginosa by online NAD(P)H fluorescence.
    Ju LK; Chen F; Xia Q
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):622-8. PubMed ID: 16228188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choline transport in Pseudomonas aeruginosa.
    Salvano MA; Lisa TA; Domenech CE
    Mol Cell Biochem; 1989 Jan; 85(1):81-9. PubMed ID: 2498639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery.
    Zhao F; Wang Q; Zhang Y; Lei L
    Microb Cell Fact; 2021 May; 20(1):103. PubMed ID: 34016105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Important Role of the Type VI Secretion System of Pseudomonas aeruginosa Regulated by Dnr in Response to Anaerobic Environments.
    Dang J; Wang T; Wen J; Liang H
    Microbiol Spectr; 2022 Dec; 10(6):e0153322. PubMed ID: 36301114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Pseudosel agar as an aid in the identification of Pseudomonas aeruginosa.
    Lambe DW; Stewart P
    Appl Microbiol; 1972 Feb; 23(2):377-81. PubMed ID: 4622830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration.
    Alvarez-Ortega C; Harwood CS
    Mol Microbiol; 2007 Jul; 65(1):153-65. PubMed ID: 17581126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.