These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34413499)

  • 1. Evolution of dynamical networks enhances catalysis in a designer enzyme.
    Bunzel HA; Anderson JLR; Hilvert D; Arcus VL; van der Kamp MW; Mulholland AJ
    Nat Chem; 2021 Oct; 13(10):1017-1022. PubMed ID: 34413499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
    Broom A; Rakotoharisoa RV; Thompson MC; Zarifi N; Nguyen E; Mukhametzhanov N; Liu L; Fraser JS; Chica RA
    Nat Commun; 2020 Sep; 11(1):4808. PubMed ID: 32968058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using High-Throughput Molecular Dynamics Simulation to Enhance the Computational Design of Kemp Elimination Enzymes.
    Wang P; Zhang J; Zhang S; Lu D; Zhu Y
    J Chem Inf Model; 2023 Feb; 63(4):1323-1337. PubMed ID: 36782360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07.
    Labas A; Szabo E; Mones L; Fuxreiter M
    Biochim Biophys Acta; 2013 May; 1834(5):908-17. PubMed ID: 23380188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of a Negative Activation Heat Capacity during Evolution of a Designed Enzyme.
    Bunzel HA; Kries H; Marchetti L; Zeymer C; Mittl PRE; Mulholland AJ; Hilvert D
    J Am Chem Soc; 2019 Jul; 141(30):11745-11748. PubMed ID: 31282667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
    Frushicheva MP; Cao J; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16869-74. PubMed ID: 20829491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Evolution Provides Strong Hints about Laboratory Evolution of Designer Enzymes.
    Xie WJ; Warshel A
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2207904119. PubMed ID: 35901204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme evolution and the temperature dependence of enzyme catalysis.
    Arcus VL; van der Kamp MW; Pudney CR; Mulholland AJ
    Curr Opin Struct Biol; 2020 Dec; 65():96-101. PubMed ID: 32659635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical origins of heat capacity changes in enzyme-catalysed reactions.
    van der Kamp MW; Prentice EJ; Kraakman KL; Connolly M; Mulholland AJ; Arcus VL
    Nat Commun; 2018 Mar; 9(1):1177. PubMed ID: 29563521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis.
    Otten R; Pádua RAP; Bunzel HA; Nguyen V; Pitsawong W; Patterson M; Sui S; Perry SL; Cohen AE; Hilvert D; Kern D
    Science; 2020 Dec; 370(6523):1442-1446. PubMed ID: 33214289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
    Khersonsky O; Röthlisberger D; Wollacott AM; Murphy P; Dym O; Albeck S; Kiss G; Houk KN; Baker D; Tawfik DS
    J Mol Biol; 2011 Apr; 407(3):391-412. PubMed ID: 21277311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of protein dynamics in reaction rate enhancement by enzymes.
    Agarwal PK
    J Am Chem Soc; 2005 Nov; 127(43):15248-56. PubMed ID: 16248667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates.
    Arcus VL; Mulholland AJ
    Annu Rev Biophys; 2020 May; 49():163-180. PubMed ID: 32040931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision is essential for efficient catalysis in an evolved Kemp eliminase.
    Blomberg R; Kries H; Pinkas DM; Mittl PR; Grütter MG; Privett HK; Mayo SL; Hilvert D
    Nature; 2013 Nov; 503(7476):418-21. PubMed ID: 24132235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase.
    Bhowmick A; Sharma SC; Head-Gordon T
    J Am Chem Soc; 2017 Apr; 139(16):5793-5800. PubMed ID: 28383910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein conformational disorder and enzyme catalysis.
    Schulenburg C; Hilvert D
    Top Curr Chem; 2013; 337():41-67. PubMed ID: 23536241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.