These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34413571)
1. A multi-sensor evaluation of precipitation uncertainty for landslide-triggering storm events. Culler ES; Badger AM; Minear JT; Tiampo KF; Zeigler SD; Livneh B Hydrol Process; 2021 Jul; 35(7):e14260. PubMed ID: 34413571 [TBL] [Abstract][Full Text] [Related]
2. Bayesian analysis of the impact of rainfall data product on simulated slope failure for North Carolina locations. Yatheendradas S; Kirschbaum D; Nearing G; Vrugt JA; Baum RL; Wooten R; Lu N; Godt JW Comput Geosci (Bassum); 2019 Jun; 23(3):495-522. PubMed ID: 33505211 [TBL] [Abstract][Full Text] [Related]
3. Incorporation of Satellite Precipitation Uncertainty in a Landslide Hazard Nowcasting System. Hartke SH; Wright DB; Kirschbaum DB; Stanley TA; Li Z J Hydrometeorol; 2020 Aug; 21(8):1741-1759. PubMed ID: 34054350 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Lin Q; Steger S; Pittore M; Zhang J; Wang L; Jiang T; Wang Y Sci Total Environ; 2022 Dec; 850():158049. PubMed ID: 35981587 [TBL] [Abstract][Full Text] [Related]
5. Colluvium supply in humid regions limits the frequency of storm-triggered landslides. Parker RN; Hales TC; Mudd SM; Grieve SW; Constantine JA Sci Rep; 2016 Sep; 6():34438. PubMed ID: 27688039 [TBL] [Abstract][Full Text] [Related]
6. Dry Spells and Extreme Precipitation are The Main Trigger of Landslides in Central Europe. Tichavský R; Ballesteros-Cánovas JA; Šilhán K; Tolasz R; Stoffel M Sci Rep; 2019 Oct; 9(1):14560. PubMed ID: 31601991 [TBL] [Abstract][Full Text] [Related]
7. Inventory of shallow landslides triggered by extreme precipitation in July 2023 in Beijing, China. Ma H; Wang F Sci Data; 2024 Oct; 11(1):1083. PubMed ID: 39362906 [TBL] [Abstract][Full Text] [Related]
8. Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates. Handwerger AL; Fielding EJ; Sangha SS; Bekaert DPS Geophys Res Lett; 2022 Jul; 49(13):e2022GL099499. PubMed ID: 36245956 [TBL] [Abstract][Full Text] [Related]
9. Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning. Wang X; Zhang X; Bi J; Zhang X; Deng S; Liu Z; Wang L; Guo H Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361127 [TBL] [Abstract][Full Text] [Related]
10. Exploitation of optical and SAR amplitude imagery for landslide identification: a case study from Sikkim, Northeast India. Sivasankar T; Ghosh S; Joshi M Environ Monit Assess; 2021 Jun; 193(7):386. PubMed ID: 34091764 [TBL] [Abstract][Full Text] [Related]
11. Space-time data-driven modeling of precipitation-induced shallow landslides in South Tyrol, Italy. Moreno M; Lombardo L; Crespi A; Zellner PJ; Mair V; Pittore M; van Westen C; Steger S Sci Total Environ; 2024 Feb; 912():169166. PubMed ID: 38072254 [TBL] [Abstract][Full Text] [Related]
12. Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness. Kirschbaum D; Stanley T Earths Future; 2018 Mar; Volume 6(Iss 3):505-523. PubMed ID: 31709272 [TBL] [Abstract][Full Text] [Related]
13. Changes in the factors contributing to the reduction of landslide fatalities between 1945 and 2019 in Japan. Shinohara Y; Kume T Sci Total Environ; 2022 Jun; 827():154392. PubMed ID: 35276158 [TBL] [Abstract][Full Text] [Related]
14. Framework for rainfall-triggered landslide-prone critical infrastructure zonation. Gnyawali K; Dahal K; Talchabhadel R; Nirandjan S Sci Total Environ; 2023 May; 872():162242. PubMed ID: 36804983 [TBL] [Abstract][Full Text] [Related]
15. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Karsli F; Atasoy M; Yalcin A; Reis S; Demir O; Gokceoglu C Environ Monit Assess; 2009 Sep; 156(1-4):241-55. PubMed ID: 18780152 [TBL] [Abstract][Full Text] [Related]
16. The human cost of global warming: Deadly landslides and their triggers (1995-2014). Haque U; da Silva PF; Devoli G; Pilz J; Zhao B; Khaloua A; Wilopo W; Andersen P; Lu P; Lee J; Yamamoto T; Keellings D; Wu JH; Glass GE Sci Total Environ; 2019 Sep; 682():673-684. PubMed ID: 31129549 [TBL] [Abstract][Full Text] [Related]
17. Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda. Kuradusenge M; Kumaran S; Zennaro M Int J Environ Res Public Health; 2020 Jun; 17(11):. PubMed ID: 32532022 [TBL] [Abstract][Full Text] [Related]
18. Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya. Chen TK; Kincey ME; Rosser NJ; Seto KC Sci Total Environ; 2024 Apr; 922():171161. PubMed ID: 38387570 [TBL] [Abstract][Full Text] [Related]
19. Event-based landslide susceptibility models in Shihmen watershed, Taiwan: accounting for the characteristics of rainfall events. Wu CY; Lin SY Environ Monit Assess; 2022 May; 194(6):405. PubMed ID: 35522350 [TBL] [Abstract][Full Text] [Related]
20. A large-scale field experiment of artificially caused landslides with replications revealed the response of the ground-dwelling beetle community to landslides. Furusawa J; Makoto K; Utsumi S Ecol Evol; 2023 Mar; 13(3):e9939. PubMed ID: 36969925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]