These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34413729)
1. Amble Gait EEG Points at Complementary Cortical Networks Underlying Stereotypic Multi-Limb Co-ordination. Weersink JB; Maurits NM; de Jong BM Front Hum Neurosci; 2021; 15():691482. PubMed ID: 34413729 [TBL] [Abstract][Full Text] [Related]
2. EEG time-frequency analysis provides arguments for arm swing support in human gait control. Weersink JB; Maurits NM; de Jong BM Gait Posture; 2019 May; 70():71-78. PubMed ID: 30826690 [TBL] [Abstract][Full Text] [Related]
3. Enhanced arm swing improves Parkinsonian gait with EEG power modulations resembling healthy gait. Weersink JB; Maurits NM; van Laar T; de Jong BM Parkinsonism Relat Disord; 2021 Oct; 91():96-101. PubMed ID: 34547655 [TBL] [Abstract][Full Text] [Related]
4. Pre-Movement Cortico-Muscular Dynamics Underlying Improved Parkinson Gait Initiation after Instructed Arm Swing. Weersink JB; Gefferie SR; van Laar T; Maurits NM; de Jong BM J Parkinsons Dis; 2020; 10(4):1675-1693. PubMed ID: 32773398 [TBL] [Abstract][Full Text] [Related]
5. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I; Sochůrková D; Bocková M Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240 [TBL] [Abstract][Full Text] [Related]
6. Gait-Assist Wearable Robot Using Interactive Rhythmic Stimulation to the Upper Limbs. Yap RMS; Ogawa KI; Hirobe Y; Nagashima T; Seki M; Nakayama M; Ichiryu K; Miyake Y Front Robot AI; 2019; 6():25. PubMed ID: 33501041 [TBL] [Abstract][Full Text] [Related]
7. Intracerebral recording of cortical activity related to self-paced voluntary movements: a Bereitschaftspotential and event-related desynchronization/synchronization. SEEG study. Sochůrková D; Rektor I; Jurák P; Stancák A Exp Brain Res; 2006 Sep; 173(4):637-49. PubMed ID: 16544136 [TBL] [Abstract][Full Text] [Related]
8. Intermuscular coherence analysis in older adults reveals that gait-related arm swing drives lower limb muscles via subcortical and cortical pathways. Weersink JB; de Jong BM; Halliday DM; Maurits NM J Physiol; 2021 Apr; 599(8):2283-2298. PubMed ID: 33687081 [TBL] [Abstract][Full Text] [Related]
9. Right parieto-premotor activation related to limb-independent antiphase movement. de Jong BM; Leenders KL; Paans AM Cereb Cortex; 2002 Nov; 12(11):1213-7. PubMed ID: 12379609 [TBL] [Abstract][Full Text] [Related]
10. Frequency-dependent modulation of neural oscillations across the gait cycle. Zhao M; Bonassi G; Samogin J; Taberna GA; Pelosin E; Nieuwboer A; Avanzino L; Mantini D Hum Brain Mapp; 2022 Aug; 43(11):3404-3415. PubMed ID: 35384123 [TBL] [Abstract][Full Text] [Related]
11. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study. Babiloni C; Babiloni F; Carducci F; Cincotti F; Cocozza G; Del Percio C; Moretti DV; Rossini PM Neuroimage; 2002 Oct; 17(2):559-72. PubMed ID: 12377134 [TBL] [Abstract][Full Text] [Related]
12. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
13. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease. Weiss D; Klotz R; Govindan RB; Scholten M; Naros G; Ramos-Murguialday A; Bunjes F; Meisner C; Plewnia C; Krüger R; Gharabaghi A Brain; 2015 Mar; 138(Pt 3):679-93. PubMed ID: 25558877 [TBL] [Abstract][Full Text] [Related]
14. EEG signatures of arm isometric exertions in preparation, planning and execution. Nasseroleslami B; Lakany H; Conway BA Neuroimage; 2014 Apr; 90():1-14. PubMed ID: 24355482 [TBL] [Abstract][Full Text] [Related]
15. Brain Networks Modulation during Simple and Complex Gait: A "Mobile Brain/Body Imaging" Study. Bonassi G; Zhao M; Samogin J; Mantini D; Marchese R; Contrino L; Tognetti P; Putzolu M; Botta A; Pelosin E; Avanzino L Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732980 [TBL] [Abstract][Full Text] [Related]
16. Preparatory band specific premotor cortical activity differentiates upper and lower extremity movement. Wheaton LA; Carpenter M; Mizelle JC; Forrester L Exp Brain Res; 2008 Jan; 184(1):121-6. PubMed ID: 17955226 [TBL] [Abstract][Full Text] [Related]
17. The neural correlates of upper limb motor blocks in Parkinson's disease and their relation to freezing of gait. Vercruysse S; Spildooren J; Heremans E; Wenderoth N; Swinnen SP; Vandenberghe W; Nieuwboer A Cereb Cortex; 2014 Dec; 24(12):3154-66. PubMed ID: 23861319 [TBL] [Abstract][Full Text] [Related]
18. Movement-related change of electrocorticographic activity in human supplementary motor area proper. Ohara S; Ikeda A; Kunieda T; Yazawa S; Baba K; Nagamine T; Taki W; Hashimoto N; Mihara T; Shibasaki H Brain; 2000 Jun; 123 ( Pt 6)():1203-15. PubMed ID: 10825358 [TBL] [Abstract][Full Text] [Related]
19. Movement-related EEG signatures associated with freezing of gait in Parkinson's disease: an integrative analysis. Karimi F; Niu J; Gouweleeuw K; Almeida Q; Jiang N Brain Commun; 2021; 3(4):fcab277. PubMed ID: 34877535 [TBL] [Abstract][Full Text] [Related]
20. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Bulea TC; Kim J; Damiano DL; Stanley CJ; Park HS Front Hum Neurosci; 2015; 9():247. PubMed ID: 26029077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]