These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34413865)
1. Modeling Niedbała G; Niazian M; Sabbatini P Front Plant Sci; 2021; 12():695110. PubMed ID: 34413865 [TBL] [Abstract][Full Text] [Related]
2. Forecasting and optimizing Agrobacterium-mediated genetic transformation via ensemble model- fruit fly optimization algorithm: A data mining approach using chrysanthemum databases. Hesami M; Alizadeh M; Naderi R; Tohidfar M PLoS One; 2020; 15(9):e0239901. PubMed ID: 32997694 [TBL] [Abstract][Full Text] [Related]
3. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel. Ravanfar SA; Aziz MA; Saud HM; Abdullah JO Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972 [TBL] [Abstract][Full Text] [Related]
4. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. Fan YL; Zhang XH; Zhong LJ; Wang XY; Jin LS; Lyu SH BMC Plant Biol; 2020 May; 20(1):208. PubMed ID: 32397958 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Kumar R; Mamrutha HM; Kaur A; Venkatesh K; Sharma D; Singh GP Mol Biol Rep; 2019 Apr; 46(2):1845-1853. PubMed ID: 30707418 [TBL] [Abstract][Full Text] [Related]
6. Agrobacterium-mediated transformation of the recalcitrant Vanda Kasem's Delight orchid with higher efficiency. Gnasekaran P; Antony JJ; Uddain J; Subramaniam S ScientificWorldJournal; 2014; 2014():583934. PubMed ID: 24977213 [TBL] [Abstract][Full Text] [Related]
7. Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. Sahoo RK; Tuteja N GM Crops Food; 2012; 3(2):123-8. PubMed ID: 22538224 [TBL] [Abstract][Full Text] [Related]
8. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus. Kimura M; Cutler S; Isobe S PLoS One; 2015; 10(7):e0131626. PubMed ID: 26176780 [TBL] [Abstract][Full Text] [Related]
10. The use of phosphomannose isomerase selection system for Agrobacterium-mediated transformation of tobacco and flax aimed for phytoremediation. Hilgert J; Sura-De Jong M; Fišer J; Tupá K; Vrbová M; Griga M; Macek T; Žiarovská J J Environ Sci Health B; 2017 May; 52(5):338-345. PubMed ID: 28277078 [TBL] [Abstract][Full Text] [Related]
11. Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies. Paul A; Bakshi S; Sahoo DP; Kalita MC; Sahoo L Appl Biochem Biotechnol; 2012 Apr; 166(8):1871-95. PubMed ID: 22434351 [TBL] [Abstract][Full Text] [Related]
12. An efficient method for Agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.). Pandey S; Mishra A; Patel MK; Jha B Appl Biochem Biotechnol; 2013 Sep; 171(1):1-9. PubMed ID: 23813408 [TBL] [Abstract][Full Text] [Related]
13. Predicting evaporation with optimized artificial neural network using multi-objective salp swarm algorithm. Ehteram M; Panahi F; Ahmed AN; Huang YF; Kumar P; Elshafie A Environ Sci Pollut Res Int; 2022 Feb; 29(7):10675-10701. PubMed ID: 34528189 [TBL] [Abstract][Full Text] [Related]
14. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation. Song GC; Lee S; Hong J; Choi HK; Hong GH; Bae DW; Mysore KS; Park YS; Ryu CM New Phytol; 2015 Jul; 207(1):148-158. PubMed ID: 25676198 [TBL] [Abstract][Full Text] [Related]
15. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Manickavasagam M; Ganapathi A; Anbazhagan VR; Sudhakar B; Selvaraj N; Vasudevan A; Kasthurirengan S Plant Cell Rep; 2004 Sep; 23(3):134-43. PubMed ID: 15133712 [TBL] [Abstract][Full Text] [Related]
16. Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids. Benyekhlef A; Mohammedi B; Hassani D; Hanini S Water Sci Technol; 2021 Aug; 84(3):538-551. PubMed ID: 34388118 [TBL] [Abstract][Full Text] [Related]
17. Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.). Subramanyam K; Rajesh M; Jaganath B; Vasuki A; Theboral J; Elayaraja D; Karthik S; Manickavasagam M; Ganapathi A Appl Biochem Biotechnol; 2013 Sep; 171(2):450-68. PubMed ID: 23852797 [TBL] [Abstract][Full Text] [Related]
18. Plant regeneration and Nakano M; Otani M Plant Biotechnol (Tokyo); 2020 Jun; 37(2):129-140. PubMed ID: 32821219 [TBL] [Abstract][Full Text] [Related]
19. QSPR estimation models of normal boiling point and relative liquid density of pure hydrocarbons using MLR and MLP-ANN methods. Roubehie Fissa M; Lahiouel Y; Khaouane L; Hanini S J Mol Graph Model; 2019 Mar; 87():109-120. PubMed ID: 30537641 [TBL] [Abstract][Full Text] [Related]
20. [Transformation of Astragalus melilotoides Pall with AtNHX1 gene and the expression of salinity tolerance of transformants]. Zhao YW; Bu HY; Hao JG; Wang YJ; Jia JF Fen Zi Xi Bao Sheng Wu Xue Bao; 2008 Jun; 41(3):213-21. PubMed ID: 18630600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]