These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34414611)

  • 1. Agile Detection of Chemical Warfare Agents by Machine Vision: a Supramolecular Approach.
    Tuccitto N; Catania G; Pappalardo A; Trusso Sfrazzetto G
    Chemistry; 2021 Oct; 27(55):13715-13718. PubMed ID: 34414611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles.
    Tuccitto N; Spitaleri L; Li Destri G; Pappalardo A; Gulino A; Trusso Sfrazzetto G
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33291853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Sensing of Chemical Warfare Agents.
    Butera E; Zammataro A; Pappalardo A; Trusso Sfrazzetto G
    Chempluschem; 2021 Apr; 86(4):681-695. PubMed ID: 33881227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.
    Sambrook MR; Notman S
    Chem Soc Rev; 2013 Dec; 42(24):9251-67. PubMed ID: 24048279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid response behavior, at room temperature, of a nanofiber-structured TiO2 sensor to selected simulant chemical-warfare agents.
    Ma X; Zhu T; Xu H; Li G; Zheng J; Liu A; Zhang J; Du H
    Anal Bioanal Chem; 2008 Feb; 390(4):1133-7. PubMed ID: 18094961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials.
    Climent E; Biyikal M; Gawlitza K; Dropa T; Urban M; Costero AM; Martínez-Máñez R; Rurack K
    Chemistry; 2016 Aug; 22(32):11138-42. PubMed ID: 27124609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescent probe generating
    Liu XJ; Feng W; Song QH
    Anal Methods; 2023 Jun; 15(23):2861-2867. PubMed ID: 37264865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAW Chemical Array Device Coated with Polymeric Sensing Materials for the Detection of Nerve Agents.
    Kim J; Park H; Kim J; Seo BI; Kim JH
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century.
    Kumar V; Kim H; Pandey B; James TD; Yoon J; Anslyn EV
    Chem Soc Rev; 2023 Jan; 52(2):663-704. PubMed ID: 36546880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of textural properties on the response of a SnO2-based gas sensor for the detection of chemical warfare agents.
    Lee SC; Kim SY; Lee WS; Jung SY; Hwang BW; Ragupathy D; Lee DD; Lee SY; Kim JC
    Sensors (Basel); 2011; 11(7):6893-904. PubMed ID: 22163991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-contact detection of chemical warfare simulant triethyl phosphate using PM-IRRAS.
    Kycia AH; Vezvaie M; Zamlynny V; Lipkowski J; Petryk MW
    Anal Chim Acta; 2012 Aug; 737():45-54. PubMed ID: 22769035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional Fluorescent Probes for the Detection of Mustard Gas and Phosgene.
    Feng W; Liu XJ; Xue MJ; Song QH
    Anal Chem; 2023 Jan; 95(2):1755-1763. PubMed ID: 36596643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular recognition platform for the simultaneous sensing of diverse chemical weapons.
    Zeng L; Chen T; Zhu B; Koo S; Tang Y; Lin W; James TD; Kim JS
    Chem Sci; 2022 Apr; 13(16):4523-4532. PubMed ID: 35656136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential sensing of toxic chemical warfare agents (CWAs) by twisted nanographenes: A first principle approach.
    Sattar N; Sajid H; Tabassum S; Ayub K; Mahmood T; Gilani MA
    Sci Total Environ; 2022 Jun; 824():153858. PubMed ID: 35176369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant.
    Jo S; Kim J; Noh J; Kim D; Jang G; Lee N; Lee E; Lee TS
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22884-93. PubMed ID: 25431844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics-based agent to simulant correlations for vapor phase mass transport.
    Willis MP; Varady MJ; Pearl TP; Fouse JC; Riley PC; Mantooth BA; Lalain TA
    J Hazard Mater; 2013 Dec; 263 Pt 2():479-85. PubMed ID: 24225584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents.
    Graichen AM; Vachet RW
    J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor.
    Liu K; Qin M; Shi Q; Wang G; Zhang J; Ding N; Xi H; Liu T; Kong J; Fang Y
    Anal Chem; 2022 Aug; 94(32):11151-11158. PubMed ID: 35921590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films.
    Fan S; Zhang G; Dennison GH; FitzGerald N; Burn PL; Gentle IR; Shaw PE
    Adv Mater; 2020 May; 32(18):e1905785. PubMed ID: 31692155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.