These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34415140)

  • 1. Dual-Salt Electrolytes to Effectively Reduce Impedance Rise of High-Nickel Lithium-Ion Batteries.
    Yang J; Fonseca Rodrigues MT; Son SB; Garcia JC; Liu K; Gim J; Iddir H; Abraham DP; Zhang Z; Liao C
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40502-40512. PubMed ID: 34415140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wide-Temperature Electrolytes for Lithium-Ion Batteries.
    Li Q; Jiao S; Luo L; Ding MS; Zheng J; Cartmell SS; Wang CM; Xu K; Zhang JG; Xu W
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18826-18835. PubMed ID: 28523915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries.
    Dose WM; Temprano I; Allen JP; Björklund E; O'Keefe CA; Li W; Mehdi BL; Weatherup RS; De Volder MFL; Grey CP
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13206-13222. PubMed ID: 35258927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation of Blended-Lithium-Salt Electrolytes for Lithium Batteries.
    Xu G; Shangguan X; Dong S; Zhou X; Cui G
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3400-3415. PubMed ID: 31332946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Interfacial Tuning To Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries.
    Ma H; Hwang D; Ahn YJ; Lee MY; Kim S; Lee Y; Lee SM; Kwak SK; Choi NS
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29365-29375. PubMed ID: 32515943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of salt concentration on properties of mixed carbonate-based electrolyte for Li-ion batteries: a molecular dynamics simulation study.
    Haghkhah H; Ghalami Choobar B; Amjad-Iranagh S
    J Mol Model; 2020 Aug; 26(8):220. PubMed ID: 32740770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Inorganic-Organic Dual-Additive Electrolytes Enable Practical High-Voltage Lithium-Ion Batteries.
    Duan K; Ning J; Zhou L; Wang S; Wang Q; Liu J; Guo Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10447-10456. PubMed ID: 35179877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries.
    Shi P; Zhang L; Xiang H; Liang X; Sun Y; Xu W
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22201-22209. PubMed ID: 29898366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxolanone-Anchored Poly(allyl ether)-Based Cross-Linked Dual-Salt Polymer Electrolytes for High-Voltage Lithium Metal Batteries.
    Vijayakumar V; Diddens D; Heuer A; Kurungot S; Winter M; Nair JR
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):567-579. PubMed ID: 31825198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of the Cathode-Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries.
    Kotronia A; Asfaw HD; Tai CW; Hahlin M; Brandell D; Edström K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3867-3880. PubMed ID: 33434003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing the Mechanism of Functional Groups in Phosphate Additives on the Interface of LiNi
    Wang J; Zhao D; Cong Y; Zhang N; Wang P; Fu X; Cui X
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16939-16951. PubMed ID: 33787208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A LiPO
    Liu L; Gu S; Wang S; Zhang X; Chen S
    RSC Adv; 2020 Jan; 10(3):1704-1710. PubMed ID: 35494667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superconcentrated electrolytes for a high-voltage lithium-ion battery.
    Wang J; Yamada Y; Sodeyama K; Chiang CH; Tateyama Y; Yamada A
    Nat Commun; 2016 Jun; 7():12032. PubMed ID: 27354162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.
    Kraft V; Grützke M; Weber W; Menzel J; Wiemers-Meyer S; Winter M; Nowak S
    J Chromatogr A; 2015 Aug; 1409():201-9. PubMed ID: 26209196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Leap of Lithium Metal Batteries in LiPF
    Zhang J; Shi J; Gordon LW; Shojarazavi N; Wen X; Zhao Y; Chen J; Su CC; Messinger RJ; Guo J
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36679-36687. PubMed ID: 35930841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on concentrated electrolytes for advanced lithium ion batteries.
    Mynam M; Kumari S; Ravikumar B; Rai B
    J Chem Phys; 2021 Jun; 154(21):214503. PubMed ID: 34240968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase.
    Xia L; Lee S; Jiang Y; Xia Y; Chen GZ; Liu Z
    ACS Omega; 2017 Dec; 2(12):8741-8750. PubMed ID: 31457404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upgrading Carbonate Electrolytes for Ultra-stable Practical Lithium Metal Batteries.
    Zhao Q; Utomo NW; Kocen AL; Jin S; Deng Y; Zhu VX; Moganty S; Coates GW; Archer LA
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202116214. PubMed ID: 35014141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface-Stabilized Layered Lithium Ni-Rich Oxide Cathode via Surface Functionalization with Titanium Silicate.
    Lee G; Jung K; Lee Y; Kim J; Yim T
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47696-47705. PubMed ID: 34585914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.