These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover. Kodo T; Nagao K; Ohmiya H Nat Commun; 2022 May; 13(1):2684. PubMed ID: 35562383 [TBL] [Abstract][Full Text] [Related]
3. Effect of electron-withdrawing substituents on the epoxide ring: an experimental and theoretical electron density analysis of a series of epoxide derivatives. Grabowsky S; Schirmeister T; Paulmann C; Pfeuffer T; Luger P J Org Chem; 2011 Mar; 76(5):1305-18. PubMed ID: 21250719 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigation of the mechanism for the cycloaddition of CO2 to epoxides catalyzed by a magnesium(II) porphyrin complex. Wang Q; Guo CH; Jia J; Wu HS J Mol Model; 2015 Jul; 21(7):179. PubMed ID: 26113116 [TBL] [Abstract][Full Text] [Related]
5. Biocatalytic Aromaticity-Breaking Epoxidation of Naphthalene and Nucleophilic Ring-Opening Reactions. Zhang W; Li H; Younes SHH; Gómez de Santos P; Tieves F; Grogan G; Pabst M; Alcalde M; Whitwood AC; Hollmann F ACS Catal; 2021 Mar; 11(5):2644-2649. PubMed ID: 33763289 [TBL] [Abstract][Full Text] [Related]
6. Metal-Catalyzed Directed Regio- and Enantioselective Ring-Opening of Epoxides. Wang C; Luo L; Yamamoto H Acc Chem Res; 2016 Feb; 49(2):193-204. PubMed ID: 26789498 [TBL] [Abstract][Full Text] [Related]
7. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates. Robinson MW; Davies AM; Buckle R; Mabbett I; Taylor SH; Graham AE Org Biomol Chem; 2009 Jun; 7(12):2559-64. PubMed ID: 19503930 [TBL] [Abstract][Full Text] [Related]
8. Stereoselectivity of microsomal epoxide hydrolase toward diol epoxides and tetrahydroepoxides derived from benz[a]anthracene. Sayer JM; Yagi H; van Bladeren PJ; Levin W; Jerina DM J Biol Chem; 1985 Feb; 260(3):1630-40. PubMed ID: 3968083 [TBL] [Abstract][Full Text] [Related]
9. Stereoselective construction of quaternary carbon stereocenters via a semipinacol rearrangement strategy. Wang B; Tu YQ Acc Chem Res; 2011 Nov; 44(11):1207-22. PubMed ID: 21728380 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and Herbicidal Activity of [3R,5S,6S]-3-Benzyloxy-5- methoxy-1,7-dioxaspiro[5.5]undecane and [3R,5S,6S]-3-Methoxy-5-benzyloxy-1,7-dioxaspiro[5.5]undecane. Brimble MA; Johnston AD; Furneaux RH J Org Chem; 1998 Feb; 63(3):471-479. PubMed ID: 11672035 [TBL] [Abstract][Full Text] [Related]
11. Substrate-specificity of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid pWW0. Metabolic and mechanistic implications. Shaw JP; Schwager F; Harayama S Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):789-94. PubMed ID: 1590768 [TBL] [Abstract][Full Text] [Related]
12. Exploration of an epoxidation-ring-opening strategy for the synthesis of lyconadin A and discovery of an unexpected Payne rearrangement. Loertscher BM; Zhang Y; Castle SL Beilstein J Org Chem; 2013; 9():1179-84. PubMed ID: 23843911 [TBL] [Abstract][Full Text] [Related]
13. Progressive studies on the novel samarium-catalyzed diastereoselective tandem semipinacol rearrangement/Tishchenko reduction of secondary alpha-hydroxy epoxides. Fan CA; Hu XD; Tu YQ; Wang BM; Song ZL Chemistry; 2003 Sep; 9(18):4301-10. PubMed ID: 14502615 [TBL] [Abstract][Full Text] [Related]
14. DT-diaphorase-catalyzed two-electron reduction of various p-benzoquinone- and 1,4-naphthoquinone epoxides. Brunmark A; Cadenas E; Segura-Aguilar J; Lind C; Ernster L Free Radic Biol Med; 1988; 5(3):133-43. PubMed ID: 3151071 [TBL] [Abstract][Full Text] [Related]
15. Enantioselective Catalytic Aldehyde α-Alkylation/Semipinacol Rearrangement: Construction of α-Quaternary-δ-Carbonyl Cycloketones and Total Synthesis of (+)-Cerapicol. Yang J; Zhang XM; Zhang FM; Wang SH; Tu YQ; Li Z; Wang XC; Wang H Angew Chem Int Ed Engl; 2020 May; 59(22):8471-8475. PubMed ID: 32124524 [TBL] [Abstract][Full Text] [Related]
16. Regio- and stereoselective synthesis of new diaminocyclopentanols. Larin EA; Kochubei VS; Atroshchenko YM Beilstein J Org Chem; 2014; 10():2513-20. PubMed ID: 25383122 [TBL] [Abstract][Full Text] [Related]
17. HNTf Wong THM; Li X; Ma D; Sun J Org Lett; 2020 Mar; 22(5):1951-1954. PubMed ID: 32091907 [TBL] [Abstract][Full Text] [Related]
18. Copper-Catalyzed Enantioselective Domino Arylation/Semipinacol Rearrangement of Allylic Alcohols with Diaryliodonium Salts. Wu H; Wang Q; Zhu J Chemistry; 2017 Sep; 23(53):13037-13041. PubMed ID: 28758703 [TBL] [Abstract][Full Text] [Related]
19. Oxidative Ring-Opening Transformation of 5-Acyl-4-pyrones as an Approach for the Tunable Synthesis of Hydroxylated Pyrones and Furans. Steparuk EV; Meshcheryakova EA; Viktorova VV; Ulitko MV; Obydennov DL; Sosnovskikh VY J Org Chem; 2023 Aug; 88(16):11590-11602. PubMed ID: 37504952 [TBL] [Abstract][Full Text] [Related]
20. Copper-Catalyzed Domino [1,3]/[1,2] Rearrangement for the Efficient Synthesis of Multisubstituted ortho-Anisidines. Ishida Y; Nakamura I; Terada M J Am Chem Soc; 2018 Jul; 140(28):8629-8633. PubMed ID: 29920083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]