These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34415174)

  • 21. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies.
    Ibn-Elhaj M; Schadt M
    Nature; 2001 Apr; 410(6830):796-9. PubMed ID: 11298443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transition metal dichalcogenide metamaterials with atomic precision.
    Munkhbat B; Yankovich AB; Baranov DG; Verre R; Olsson E; Shegai TO
    Nat Commun; 2020 Sep; 11(1):4604. PubMed ID: 32929093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metasurface Integrated Monolayer Exciton Polariton.
    Chen Y; Miao S; Wang T; Zhong D; Saxena A; Chow C; Whitehead J; Gerace D; Xu X; Shi SF; Majumdar A
    Nano Lett; 2020 Jul; 20(7):5292-5300. PubMed ID: 32519865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene.
    Lorchat E; López LEP; Robert C; Lagarde D; Froehlicher G; Taniguchi T; Watanabe K; Marie X; Berciaud S
    Nat Nanotechnol; 2020 Apr; 15(4):283-288. PubMed ID: 32152557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition.
    Itagaki N; Nakamura Y; Narishige R; Takeda K; Kamataki K; Koga K; Hori M; Shiratani M
    Sci Rep; 2020 Mar; 10(1):4669. PubMed ID: 32170213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons.
    Zhou Y; Scuri G; Wild DS; High AA; Dibos A; Jauregui LA; Shu C; De Greve K; Pistunova K; Joe AY; Taniguchi T; Watanabe K; Kim P; Lukin MD; Park H
    Nat Nanotechnol; 2017 Sep; 12(9):856-860. PubMed ID: 28650440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flat-optics hybrid MoS
    Ferrando G; Gardella M; Zambito G; Barelli M; Chowdhury D; Giordano MC; Buatier de Mongeot F
    Nanoscale; 2023 Jan; 15(4):1953-1961. PubMed ID: 36625311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Topological phase singularities in atomically thin high-refractive-index materials.
    Ermolaev G; Voronin K; Baranov DG; Kravets V; Tselikov G; Stebunov Y; Yakubovsky D; Novikov S; Vyshnevyy A; Mazitov A; Kruglov I; Zhukov S; Romanov R; Markeev AM; Arsenin A; Novoselov KS; Grigorenko AN; Volkov V
    Nat Commun; 2022 Apr; 13(1):2049. PubMed ID: 35440544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity.
    Kang K; Xie S; Huang L; Han Y; Huang PY; Mak KF; Kim CJ; Muller D; Park J
    Nature; 2015 Apr; 520(7549):656-60. PubMed ID: 25925478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonics in Atomically Thin Crystalline Silver Films.
    Abd El-Fattah ZM; Mkhitaryan V; Brede J; Fernández L; Li C; Guo Q; Ghosh A; Echarri AR; Naveh D; Xia F; Ortega JE; García de Abajo FJ
    ACS Nano; 2019 Jul; 13(7):7771-7779. PubMed ID: 31188552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain.
    Xie S; Tu L; Han Y; Huang L; Kang K; Lao KU; Poddar P; Park C; Muller DA; DiStasio RA; Park J
    Science; 2018 Mar; 359(6380):1131-1136. PubMed ID: 29590041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optically controllable magnetism in atomically thin semiconductors.
    Hao K; Shreiner R; Kindseth A; High AA
    Sci Adv; 2022 Sep; 8(39):eabq7650. PubMed ID: 36179032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous Formation of Atomically Thin Stripes in Transition Metal Dichalcogenide Monolayers.
    Azizi A; Wang Y; Lin Z; Wang K; Elias AL; Terrones M; Crespi VH; Alem N
    Nano Lett; 2016 Nov; 16(11):6982-6987. PubMed ID: 27673342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets.
    Zhou KG; Zhao M; Chang MJ; Wang Q; Wu XZ; Song Y; Zhang HL
    Small; 2015 Feb; 11(6):694-701. PubMed ID: 25236419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective Pattern Growth of Atomically Thin MoSe
    Kang WT; Phan TL; Ahn KJ; Lee I; Kim YR; Won UY; Kim JE; Lee YH; Yu WJ
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18056-18064. PubMed ID: 33827208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges.
    Duan X; Wang C; Pan A; Yu R; Duan X
    Chem Soc Rev; 2015 Dec; 44(24):8859-76. PubMed ID: 26479493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protecting the properties of monolayer MoS₂ on silicon based substrates with an atomically thin buffer.
    Man MK; Deckoff-Jones S; Winchester A; Shi G; Gupta G; Mohite AD; Kar S; Kioupakis E; Talapatra S; Dani KM
    Sci Rep; 2016 Feb; 6():20890. PubMed ID: 26869269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultra-sensitive nanometric flat laser prints for binocular stereoscopic image.
    Hu D; Li H; Zhu Y; Lei Y; Han J; Xian S; Zheng J; Guan BO; Cao Y; Bi L; Li X
    Nat Commun; 2021 Feb; 12(1):1154. PubMed ID: 33608554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates.
    Chow PK; Singh E; Viana BC; Gao J; Luo J; Li J; Lin Z; Elías AL; Shi Y; Wang Z; Terrones M; Koratkar N
    ACS Nano; 2015 Mar; 9(3):3023-31. PubMed ID: 25752871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple approach to analyze layer-dependent optical properties of few-layer transition metal dichalcogenide thin films.
    Alkabsh A; Samassekou H; Mazumdar D
    Nanotechnology; 2019 Jan; 30(3):03LT02. PubMed ID: 30418937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.