BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3441519)

  • 1. Studies on the physical state of water in living cells and model systems. VI. Concentration-dependent sustained volume changes of dialysis sacs containing aqueous solution of native and denatured protein, gelatin, and oxygen-containing polymers immersed in solutions of Na salt and of sugar and sugar alcohol.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys Med NMR; 1987; 19(3):177-92. PubMed ID: 3441519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the physical state of water in living cells and model systems. IV. Freezing and thawing point depression of water by gelatin, oxygen-containing polymers and urea-denatured proteins.
    Ling GN; Zhang ZL
    Physiol Chem Phys Med NMR; 1983; 15(5):391-406. PubMed ID: 6675032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute exclusion by polymer and protein-dominated water: correlation with results of nuclear magnetic resonance (NMR) and calorimetric studies and their significance for the understanding of the physical state of water in living cells.
    Ling GN
    Scanning Microsc; 1988 Jun; 2(2):871-84. PubMed ID: 3041574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the physical state of water in living cells and model systems. X. The dependence of the equilibrium distribution coefficient of a solute in polarized water on the molecular weights of the solute: experimental confirmation of the "size rule" in model studies.
    Ling GN; Hu W
    Physiol Chem Phys Med NMR; 1988; 20(4):293-307. PubMed ID: 3254539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the physical state of water in living cells and model systems. V. The warming exothermic reaction of frozen aqueous solution of polyvinylpyrrolidone, poly(ethylene oxide), and urea-denatured proteins.
    Zhang ZL; Ling GN
    Physiol Chem Phys Med NMR; 1983; 15(5):407-15. PubMed ID: 6675033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the physical state of water in living cells and model systems. II. NMR relaxation times of water protons in aqueous solutions of gelatin and oxygen-containing polymers which reduce the solvency of water for NA+, sugars, and free amino acids.
    Ling GN; Murphy RC
    Physiol Chem Phys Med NMR; 1983; 15(2):137-54. PubMed ID: 6665043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell volumes and water contents of frog muscles in solutions of permeant sugars and sugar alcohols.
    Ling GN
    Physiol Chem Phys Med NMR; 1987; 19(3):159-75. PubMed ID: 3502025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the physical state of water in living cells and model systems. VII. Exclusion of sugars and sugar alcohols from the water in sulfonate ion exchange resins: the "size rule".
    Ling GN
    Physiol Chem Phys Med NMR; 1987; 19(3):193-8. PubMed ID: 3441520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative theory of solute distribution in cell water according to molecular size.
    Ling GN
    Physiol Chem Phys Med NMR; 1993; 25(3):145-75. PubMed ID: 8115492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the physical state of water in living cells and model systems. III. The high osmotic activities of aqueous solutions of gelatin, polyvinylpyrrolidone and poly (ethylene oxide) and their relation to the reduced solubility for NA+, sugars, and free amino acids.
    Ling GN
    Physiol Chem Phys Med NMR; 1983; 15(2):155-65. PubMed ID: 6665044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physical theory of the living state: application to water and solute distribution.
    Ling GN
    Scanning Microsc; 1988 Jun; 2(2):899-913. PubMed ID: 3399856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictions of polarized multilayer theory of solute distribution confirmed from a study of the equilibrium distribution in frog muscle of twenty-one nonelectrolytes including five cryoprotectants.
    Ling GN; Niu Z; Ochsenfeld M
    Physiol Chem Phys Med NMR; 1993; 25(3):177-208. PubMed ID: 8115493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A historically significant study that at once disproves the membrane (pump) theory and confirms that nano-protoplasm is the ultimate physical basis of life--yet so simple and low-cost that it could easily be repeated in many high school biology classrooms worldwide.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys Med NMR; 2008; 40():89-113. PubMed ID: 20070042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What befalls the proteins and water in a living cell when the cell dies?
    Ling GN; Fu YZ
    Physiol Chem Phys Med NMR; 2005; 37(2):141-58. PubMed ID: 17022374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of physical studies of bulk water in biopolymers.
    Negendank W
    Scanning Microsc; 1988 Jun; 2(2):867-70. PubMed ID: 3041573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the physical state of water in living cells and model systems. VIII. Water vapor sorption on proteins and oxygen-containing polymers at physiological vapor pressures: presenting a new method for the study of vapor sorption at close to and including saturation.
    Ling GN; Hu WX
    Physiol Chem Phys Med NMR; 1987; 19(4):251-69. PubMed ID: 3449865
    [No Abstract]   [Full Text] [Related]  

  • 17. [Study of heat denaturation of human serum albumin in water-alcohol and water-salt solutions in the presence of organic ligands].
    Stepuro II; Lapshina EA; Chaĭkovskaia NA
    Mol Biol (Mosk); 1991; 25(2):337-47. PubMed ID: 1881392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the physical state of water in living cells and model systems. I. The quantitative relationship between the concentration of gelatin and certain oxygen-containing polymers and their influence upon the solubility of water for NA+ salts.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys Med NMR; 1983; 15(2):127-36. PubMed ID: 6665042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S; Chan HS
    Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of reduced cell volume and water content on glycolysis in L-929 cells.
    Clegg JS; Jackson SA; Fendl K
    J Cell Physiol; 1990 Feb; 142(2):386-91. PubMed ID: 2303530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.