These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 34415301)

  • 1. Improved datasets and evaluation methods for the automatic prediction of DNA-binding proteins.
    Zaitzeff A; Leiby N; Motta FC; Haase SB; Singer JM
    Bioinformatics; 2021 Dec; 38(1):44-51. PubMed ID: 34415301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting enzymatic function of protein sequences with attention.
    Buton N; Coste F; Le Cunff Y
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37874958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. StackDPPred: a stacking based prediction of DNA-binding protein from sequence.
    Mishra A; Pokhrel P; Hoque MT
    Bioinformatics; 2019 Feb; 35(3):433-441. PubMed ID: 30032213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Set of approaches based on 3D structure and position specific-scoring matrix for predicting DNA-binding proteins.
    Nanni L; Brahnam S
    Bioinformatics; 2019 Jun; 35(11):1844-1851. PubMed ID: 30395157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell type matching across species using protein embeddings and transfer learning.
    Biharie K; Michielsen L; Reinders MJT; Mahfouz A
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i404-i412. PubMed ID: 37387141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NetTIME: a multitask and base-pair resolution framework for improved transcription factor binding site prediction.
    Yi R; Cho K; Bonneau R
    Bioinformatics; 2022 Oct; 38(20):4762-4770. PubMed ID: 35997560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting pretrained biochemical language models for targeted drug design.
    Uludoğan G; Ozkirimli E; Ulgen KO; Karalı N; Özgür A
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii155-ii161. PubMed ID: 36124801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAPPPID: towards generalizable protein interaction prediction with AWD-LSTM twin networks.
    Szymborski J; Emad A
    Bioinformatics; 2022 Aug; 38(16):3958-3967. PubMed ID: 35771595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segway 2.0: Gaussian mixture models and minibatch training.
    Chan RCW; Libbrecht MW; Roberts EG; Bilmes JA; Noble WS; Hoffman MM
    Bioinformatics; 2018 Feb; 34(4):669-671. PubMed ID: 29028889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple tricks of convolutional neural network architectures improve DNA-protein binding prediction.
    Cao Z; Zhang S
    Bioinformatics; 2019 Jun; 35(11):1837-1843. PubMed ID: 30351403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetSolP: predicting protein solubility in Escherichia coli using language models.
    Thumuluri V; Martiny HM; Almagro Armenteros JJ; Salomon J; Nielsen H; Johansen AR
    Bioinformatics; 2022 Jan; 38(4):941-946. PubMed ID: 35088833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving protein function prediction using protein sequence and GO-term similarities.
    Makrodimitris S; van Ham RCHJ; Reinders MJT
    Bioinformatics; 2019 Apr; 35(7):1116-1124. PubMed ID: 30169569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the Sequence Specificities of DNA-Binding Proteins by DNA Fine-Tuned Language Model With Decaying Learning Rates.
    He Y; Zhang Q; Wang S; Chen Z; Cui Z; Guo ZH; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):616-624. PubMed ID: 35389869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JIND: joint integration and discrimination for automated single-cell annotation.
    Goyal M; Serrano G; Argemi J; Shomorony I; Hernaez M; Ochoa I
    Bioinformatics; 2022 Apr; 38(9):2488-2495. PubMed ID: 35253844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool.
    Motion GB; Howden AJ; Huitema E; Jones S
    Nucleic Acids Res; 2015 Dec; 43(22):e158. PubMed ID: 26304539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards region-specific propagation of protein functions.
    Koo DCE; Bonneau R
    Bioinformatics; 2019 May; 35(10):1737-1744. PubMed ID: 30304483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets.
    Andreatta M; Berenstein AJ; Carmona SJ
    Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.