These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Plant-associated CO Arce CC; Theepan V; Schimmel BC; Jaffuel G; Erb M; Machado RA Elife; 2021 Apr; 10():. PubMed ID: 33875133 [TBL] [Abstract][Full Text] [Related]
24. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.). Bohn MO; Marroquin JJ; Flint-Garcia S; Dashiell K; Willmot DB; Hibbard BE J Econ Entomol; 2018 Feb; 111(1):435-444. PubMed ID: 29228374 [TBL] [Abstract][Full Text] [Related]
25. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967 [TBL] [Abstract][Full Text] [Related]
26. Effects of above- and belowground herbivory on growth, pollination, and reproduction in cucumber. Barber NA; Adler LS; Bernardo HL Oecologia; 2011 Feb; 165(2):377-86. PubMed ID: 20859750 [TBL] [Abstract][Full Text] [Related]
27. A random survival forest illustrates the importance of natural enemies compared to host plant quality on leaf beetle survival rates. Verschut TA; Hambäck PA BMC Ecol; 2018 Sep; 18(1):33. PubMed ID: 30200936 [TBL] [Abstract][Full Text] [Related]
28. Response of Maize Hybrids With and Without Rootworm- and Drought-Tolerance to Rootworm Infestation Under Well-Watered and Drought Conditions. Mahmoud MAB; Sharp RE; Oliver MJ; Finke DL; Bohn M; Ellersieck MR; Hibbard BE J Econ Entomol; 2018 Feb; 111(1):193-208. PubMed ID: 29190344 [TBL] [Abstract][Full Text] [Related]
29. Species-specific plant-mediated effects between herbivores converge at high damage intensity. Wan J; Yi J; Tao Z; Ren Z; Otieno EO; Tian B; Ding J; Siemann E; Erb M; Huang W Ecology; 2022 May; 103(5):e3647. PubMed ID: 35072958 [TBL] [Abstract][Full Text] [Related]
31. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore. Murray TJ; Ellsworth DS; Tissue DT; Riegler M Glob Chang Biol; 2013 May; 19(5):1407-16. PubMed ID: 23504696 [TBL] [Abstract][Full Text] [Related]
32. The impact of climate change on maize chemical defenses. Yactayo-Chang JP; Block AK Biochem J; 2023 Aug; 480(16):1285-1298. PubMed ID: 37622733 [TBL] [Abstract][Full Text] [Related]
33. Is There a Temperate Bias in Our Understanding of How Climate Change Will Alter Plant-Herbivore Interactions? A Meta-analysis of Experimental Studies. Mundim FM; Bruna EM Am Nat; 2016 Sep; 188 Suppl 1():S74-89. PubMed ID: 27513912 [TBL] [Abstract][Full Text] [Related]
34. Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies? Boullis A; Francis F; Verheggen FJ Environ Entomol; 2015 Apr; 44(2):277-86. PubMed ID: 26313181 [TBL] [Abstract][Full Text] [Related]
35. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth. Tsunoda T; Kachi N; Suzuki J PLoS One; 2014; 9(6):e100437. PubMed ID: 24937126 [TBL] [Abstract][Full Text] [Related]
36. The role of abscisic acid and water stress in root herbivore-induced leaf resistance. Erb M; Köllner TG; Degenhardt J; Zwahlen C; Hibbard BE; Turlings TC New Phytol; 2011 Jan; 189(1):308-20. PubMed ID: 20840610 [TBL] [Abstract][Full Text] [Related]
37. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Pan Y; Zhao SW; Tang XL; Wang S; Wang X; Zhang XX; Zhou JJ; Xi JH Genome; 2020 Jan; 63(1):1-12. PubMed ID: 31533014 [TBL] [Abstract][Full Text] [Related]