These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34415539)

  • 21. Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization.
    Trask BJ; Allen S; Massa H; Fertitta A; Sachs R; van den Engh G; Wu M
    Cold Spring Harb Symp Quant Biol; 1993; 58():767-75. PubMed ID: 7956093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entropic organization of interphase chromosomes.
    Cook PR; Marenduzzo D
    J Cell Biol; 2009 Sep; 186(6):825-34. PubMed ID: 19752020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A random-walk/giant-loop model for interphase chromosomes.
    Sachs RK; van den Engh G; Trask B; Yokota H; Hearst JE
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2710-4. PubMed ID: 7708711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer models are a versatile tool to study chromatin 3D organization.
    Esposito A; Bianco S; Fiorillo L; Conte M; Abraham A; Musella F; Nicodemi M; Prisco A; Chiariello AM
    Biochem Soc Trans; 2021 Aug; 49(4):1675-1684. PubMed ID: 34282837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin folding--from biology to polymer models and back.
    Tark-Dame M; van Driel R; Heermann DW
    J Cell Sci; 2011 Mar; 124(Pt 6):839-45. PubMed ID: 21378305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci.
    Liu L; Shi G; Thirumalai D; Hyeon C
    PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A view of interphase chromosomes.
    Manuelidis L
    Science; 1990 Dec; 250(4987):1533-40. PubMed ID: 2274784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatin Loop Extrusion and Chromatin Unknotting.
    Racko D; Benedetti F; Goundaroulis D; Stasiak A
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A two-backbone polymer model for interphase chromosome geometry.
    Liu B; Sachs RK
    Bull Math Biol; 1997 Mar; 59(2):325-37. PubMed ID: 9116603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes.
    Ghosh SK; Jost D
    PLoS Comput Biol; 2018 May; 14(5):e1006159. PubMed ID: 29813054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bridging the resolution gap in structural modeling of 3D genome organization.
    Marti-Renom MA; Mirny LA
    PLoS Comput Biol; 2011 Jul; 7(7):e1002125. PubMed ID: 21779160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic 3D compartments emerge from unfolding mitotic chromosomes.
    Kumar R; Lizana L; Stenberg P
    Chromosoma; 2019 Mar; 128(1):15-20. PubMed ID: 30357462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques.
    Bystricky K; Heun P; Gehlen L; Langowski J; Gasser SM
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16495-500. PubMed ID: 15545610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamical modeling of three-dimensional genome organization in interphase budding yeast.
    Tokuda N; Terada TP; Sasai M
    Biophys J; 2012 Jan; 102(2):296-304. PubMed ID: 22339866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational approaches from polymer physics to investigate chromatin folding.
    Bianco S; Chiariello AM; Conte M; Esposito A; Fiorillo L; Musella F; Nicodemi M
    Curr Opin Cell Biol; 2020 Jun; 64():10-17. PubMed ID: 32045823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin structure and chromosome aberrations: modeling of damage induced by isotropic and localized irradiation.
    Kreth G; Münkel C; Langowski J; Cremer T; Cremer C
    Mutat Res; 1998 Aug; 404(1-2):77-88. PubMed ID: 9729289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome organization via loop extrusion, insights from polymer physics models.
    Ghosh SK; Jost D
    Brief Funct Genomics; 2020 Mar; 19(2):119-127. PubMed ID: 31711163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topological constraints and chromosome organization in eukaryotes: a physical point of view.
    Rosa A
    Biochem Soc Trans; 2013 Apr; 41(2):612-5. PubMed ID: 23514163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Model of Repetitive-DNA-Organized Chromatin Network of Interphase Chromosomes.
    Tang SJ
    Genes (Basel); 2012 Mar; 3(1):167-75. PubMed ID: 24704848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models.
    Brackley CA; Brown JM; Waithe D; Babbs C; Davies J; Hughes JR; Buckle VJ; Marenduzzo D
    Genome Biol; 2016 Mar; 17():59. PubMed ID: 27036497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.