These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34415805)

  • 1. Smart Skin: Vision-Based Soft Pressure Sensing System for In-Home Hand Rehabilitation.
    Han Y; Varadarajan A; Kim T; Zheng G; Kitani K; Kelliher A; Rikakis T; Park YL
    Soft Robot; 2022 Jun; 9(3):473-485. PubMed ID: 34415805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An instrumented object for hand exercise and assessment using a pneumatic pressure sensor.
    Mohan A; Tharion G; Kumar RK; Devasahayam SR
    Rev Sci Instrum; 2018 May; 89(5):055004. PubMed ID: 29864878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR_CHIROD v.2: magnetic resonance compatible smart hand rehabilitation device for brain imaging.
    Khanicheh A; Mintzopoulos D; Weinberg B; Tzika AA; Mavroidis C
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):91-8. PubMed ID: 18303810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI-compatible rehabilitation hand device.
    Khanicheh A; Muto A; Triantafyllou C; Weinberg B; Astrakas L; Tzika A; Mavroidis C
    J Neuroeng Rehabil; 2006 Oct; 3():24. PubMed ID: 17022828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuzzy logic-based mobile computing system for hand rehabilitation after neurological injury.
    Chiu YH; Chen TW; Chen YJ; Su CI; Hwang KS; Ho WH
    Technol Health Care; 2018; 26(1):17-27. PubMed ID: 29060950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation.
    Delph MA; Fischer SA; Gauthier PW; Luna CH; Clancy EA; Fischer GS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650426. PubMed ID: 24187244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach.
    Park W; Jeong W; Kwon GH; Kim YH; Kim L
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650482. PubMed ID: 24187299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel-Elastomer Ionic Sensors for Hand-Motion Monitoring.
    Gu G; Xu H; Peng S; Li L; Chen S; Lu T; Guo X
    Soft Robot; 2019 Jun; 6(3):368-376. PubMed ID: 30848994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intelligent Object Grasping With Sensor Fusion for Rehabilitation and Assistive Applications.
    Lee BJB; Williams A; Ben-Tzvi P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1556-1565. PubMed ID: 29994121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Better grip force control by attending to the controlled object: Evidence for direct force estimation from visual motion.
    Takamuku S; Gomi H
    Sci Rep; 2019 Sep; 9(1):13114. PubMed ID: 31511634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Diagnosis of Industrial Motors by Using Vision-Based Smart Sensing Technology.
    Chang CY; Chang EC; Huang CW
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Vision and Wearable Sensors-based System for Movement Analysis in Rehabilitation.
    Spasojević S; Ilić TV; Milanović S; Potkonjak V; Rodić A; Santos-Victor J
    Methods Inf Med; 2017 Mar; 56(2):95-111. PubMed ID: 27922660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor-Enhanced Smart Gripper Development for Automated Meat Processing.
    Takács K; Takács B; Garamvölgyi T; Tarsoly S; Alexy M; Móga K; Rudas IJ; Galambos P; Haidegger T
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless, Smart Hemostasis Device with All-Soft Sensing System for Quantitative and Real-Time Pressure Evaluation.
    Zhang C; Yang Q; Meng X; Li H; Luo Z; Kai L; Liang J; Chen S; Chen F
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303418. PubMed ID: 37688344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach.
    Liu C; Zhuang Y; Nasrollahi A; Lu L; Haider MF; Chang FK
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Untethered Soft Robotics with Fully Integrated Wireless Sensing and Actuating Systems for Somatosensory and Respiratory Functions.
    Oh B; Park YG; Jung H; Ji S; Cheong WH; Cheon J; Lee W; Park JU
    Soft Robot; 2020 Oct; 7(5):564-573. PubMed ID: 31977289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis.
    Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer vision-based classification of hand grip variations in neurorehabilitation.
    Zariffa J; Steeves JD
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975421. PubMed ID: 22275622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability and Validity of Clinically Accessible Smart Glove Technologies to Measure Joint Range of Motion.
    Henderson J; Condell J; Connolly J; Kelly D; Curran K
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.