These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34415924)

  • 1. Forecasting renewable energy for environmental resilience through computational intelligence.
    Khan M; Al-Ammar EA; Naeem MR; Ko W; Choi HJ; Kang HK
    PLoS One; 2021; 16(8):e0256381. PubMed ID: 34415924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance enhancement of short-term wind speed forecasting model using Realtime data.
    Ashraf M; Raza B; Arshad M; Khan BM; Zaidi SSH
    PLoS One; 2024; 19(5):e0302664. PubMed ID: 38820359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands.
    Butt FM; Hussain L; Mahmood A; Lone KJ
    Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid attention-based deep neural networks for short-term wind power forecasting using meteorological data in desert regions.
    Belletreche M; Bailek N; Abotaleb M; Bouchouicha K; Zerouali B; Guermoui M; Kuriqi A; Alharbi AH; Khafaga DS; El-Shimy M; El-Kenawy EM
    Sci Rep; 2024 Sep; 14(1):21842. PubMed ID: 39294219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term wind power forecasting through stacked and bi directional LSTM techniques.
    Ali Khan M; Khan IA; Shah S; El-Affendi M; Jadoon W
    PeerJ Comput Sci; 2024; 10():e1949. PubMed ID: 38660151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explainable AI and optimized solar power generation forecasting model based on environmental conditions.
    Rizk-Allah RM; Abouelmagd LM; Darwish A; Snasel V; Hassanien AE
    PLoS One; 2024; 19(10):e0308002. PubMed ID: 39356693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.
    Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ
    J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PM
    Yang M; Fan H; Zhao K
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31739449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence-based forecasting model for incinerator in sulfur recovery units to predict SO
    Thameem M; Raj A; Berrouk A; Jaoude MA; AlHammadi AA
    Environ Res; 2024 May; 249():118329. PubMed ID: 38325781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Efficient Electricity Forecasting in Residential and Commercial Buildings: A Novel Hybrid CNN with a LSTM-AE based Framework.
    Khan ZA; Hussain T; Ullah A; Rho S; Lee M; Baik SW
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM Model Supported by Lidar.
    Zhang J; Zhao Z; Yan J; Cheng P
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms.
    Ibrahim M; Alsheikh A; Al-Hindawi Q; Al-Dahidi S; ElMoaqet H
    Comput Intell Neurosci; 2020; 2020():8439719. PubMed ID: 32377179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep CNN-LSTM Model for Particulate Matter (PM
    Huang CJ; Kuo PH
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29996546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air quality index forecast in Beijing based on CNN-LSTM multi-model.
    Zhang J; Li S
    Chemosphere; 2022 Dec; 308(Pt 1):136180. PubMed ID: 36058367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition.
    Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of ANN-based wind power forecasting by modification of surface roughness parameterization over complex terrain.
    Kim J; Shin HJ; Lee K; Hong J
    J Environ Manage; 2024 Jun; 362():121246. PubMed ID: 38823298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-Day Solar Power Forecasting Strategy for Managing Virtual Power Plants.
    Moreno G; Santos C; Martín P; Rodríguez FJ; Peña R; Vuksanovic B
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNN-LSTM deep learning based forecasting model for COVID-19 infection cases in Nigeria, South Africa and Botswana.
    Muhammad LJ; Haruna AA; Sharif US; Mohammed MB
    Health Technol (Berl); 2022; 12(6):1259-1276. PubMed ID: 36406187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Machine Learning Algorithm for Tourism Demand Prediction.
    Yu N; Chen J
    Comput Math Methods Med; 2022; 2022():6352381. PubMed ID: 35720035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.