These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 34415959)
1. Consensus based framework for digital mobility monitoring. Kluge F; Del Din S; Cereatti A; Gaßner H; Hansen C; Helbostad JL; Klucken J; Küderle A; Müller A; Rochester L; Ullrich M; Eskofier BM; Mazzà C; PLoS One; 2021; 16(8):e0256541. PubMed ID: 34415959 [TBL] [Abstract][Full Text] [Related]
2. Smartphone-Based Assessment of Gait During Straight Walking, Turning, and Walking Speed Modulation in Laboratory and Free-Living Environments. Silsupadol P; Prupetkaew P; Kamnardsiri T; Lugade V IEEE J Biomed Health Inform; 2020 Apr; 24(4):1188-1195. PubMed ID: 31329138 [TBL] [Abstract][Full Text] [Related]
3. Continuous Digital Monitoring of Walking Speed in Frail Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical Trial. Mueller A; Hoefling HA; Muaremi A; Praestgaard J; Walsh LC; Bunte O; Huber RM; Fürmetz J; Keppler AM; Schieker M; Böcker W; Roubenoff R; Brachat S; Rooks DS; Clay I JMIR Mhealth Uhealth; 2019 Nov; 7(11):e15191. PubMed ID: 31774406 [TBL] [Abstract][Full Text] [Related]
4. Digital wearable insole-based identification of knee arthropathies and gait signatures using machine learning. Wipperman MF; Lin AZ; Gayvert KM; Lahner B; Somersan-Karakaya S; Wu X; Im J; Lee M; Koyani B; Setliff I; Thakur M; Duan D; Breazna A; Wang F; Lim WK; Halasz G; Urbanek J; Patel Y; Atwal GS; Hamilton JD; Stuart S; Levy O; Avbersek A; Alaj R; Hamon SC; Harari O Elife; 2024 Apr; 13():. PubMed ID: 38686919 [TBL] [Abstract][Full Text] [Related]
5. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Benson LC; Clermont CA; Bošnjak E; Ferber R Gait Posture; 2018 Jun; 63():124-138. PubMed ID: 29730488 [TBL] [Abstract][Full Text] [Related]
6. Probabilistic Estimation of Cadence and Walking Speed From Floor Vibrations. MejiaCruz Y; Caicedo JM; Jiang Z; Franco JM IEEE J Transl Eng Health Med; 2024; 12():508-519. PubMed ID: 39050619 [TBL] [Abstract][Full Text] [Related]
8. Consensus on the Terms and Procedures for Planning and Reporting a Usability Evaluation of Health-Related Digital Solutions: Delphi Study and a Resulting Checklist. Martins AI; Santinha G; Almeida AM; Ribeiro Ó; Silva T; Rocha N; Silva AG J Med Internet Res; 2023 Jun; 25():e44326. PubMed ID: 37279047 [TBL] [Abstract][Full Text] [Related]
9. Flexible Piezoelectric Sensor-Based Gait Recognition. Cha Y; Kim H; Kim D Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401752 [TBL] [Abstract][Full Text] [Related]
10. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population. De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K Clin Biomech (Bristol); 2018 May; 54():22-27. PubMed ID: 29533844 [TBL] [Abstract][Full Text] [Related]
12. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring. Cai X; Han G; Song X; Wang J IEEE Trans Biomed Eng; 2017 Nov; 64(11):2618-2627. PubMed ID: 28092516 [TBL] [Abstract][Full Text] [Related]
13. Do We Walk Differently at Home? A Context-Aware Gait Analysis System in Continuous Real-World Environments. Roth N; Wieland GP; Kuderle A; Ullrich M; Gladow T; Marxreiter F; Klucken J; Eskofier BM; Kluge F Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1932-1935. PubMed ID: 34891665 [TBL] [Abstract][Full Text] [Related]
14. Analyzing Gait in the Real World Using Wearable Movement Sensors and Frequently Repeated Movement Paths. Wang W; Adamczyk PG Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31022889 [TBL] [Abstract][Full Text] [Related]
15. Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis. Hickey A; Del Din S; Rochester L; Godfrey A Physiol Meas; 2017 Jan; 38(1):N1-N15. PubMed ID: 27941238 [TBL] [Abstract][Full Text] [Related]
16. What features of the built environment matter most for mobility? Using wearable sensors to capture real-time outdoor environment demand on gait performance. Twardzik E; Duchowny K; Gallagher A; Alexander N; Strasburg D; Colabianchi N; Clarke P Gait Posture; 2019 Feb; 68():437-442. PubMed ID: 30594872 [TBL] [Abstract][Full Text] [Related]
17. Development of the Idiopathic Toe Walking Outcome (iTWO) proforma: A modified delphi study and online parent survey for measurement consensus. Gray K; Pacey V; Caserta A; Polt D; Williams C Gait Posture; 2023 Jan; 99():111-118. PubMed ID: 36399873 [TBL] [Abstract][Full Text] [Related]
18. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications. Zhang Q; Jin T; Cai J; Xu L; He T; Wang T; Tian Y; Li L; Peng Y; Lee C Adv Sci (Weinh); 2022 Feb; 9(4):e2103694. PubMed ID: 34796695 [TBL] [Abstract][Full Text] [Related]
19. Real-Life Gait Performance as a Digital Biomarker for Motor Fluctuations: The Parkinson@Home Validation Study. Evers LJ; Raykov YP; Krijthe JH; Silva de Lima AL; Badawy R; Claes K; Heskes TM; Little MA; Meinders MJ; Bloem BR J Med Internet Res; 2020 Oct; 22(10):e19068. PubMed ID: 33034562 [TBL] [Abstract][Full Text] [Related]
20. Development and Assessment of Artificial Intelligence-Empowered Gait Monitoring System Using Single Inertial Sensor. Zhou J; Mao Q; Yang F; Zhang J; Shi M; Hu Z Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]