These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34415959)

  • 21. Recalibration of inhibitory control systems during walking-related dual-task interference: a mobile brain-body imaging (MOBI) study.
    De Sanctis P; Butler JS; Malcolm BR; Foxe JJ
    Neuroimage; 2014 Jul; 94():55-64. PubMed ID: 24642283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors.
    Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device.
    Kirk C; Küderle A; Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Soltani A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Eskofier BM; Del Din S;
    Sci Rep; 2024 Jan; 14(1):1754. PubMed ID: 38243008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters.
    Rudisch J; Jöllenbeck T; Vogt L; Cordes T; Klotzbier TJ; Vogel O; Wollesen B
    Gait Posture; 2021 Mar; 85():55-64. PubMed ID: 33516094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients.
    Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W
    J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global Harmonization of Morphological Definitions in Hidradenitis Suppurativa for a Proposed Glossary.
    Frew JW; Lowes MA; Goldfarb N; Butt M; Piguet V; O'Brien E; Ingram J; Jemec GBE; Tan J; Zouboulis C; Alavi A; Kirby JS
    JAMA Dermatol; 2021 Apr; 157(4):449-455. PubMed ID: 33688910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions.
    Lozano-Garcia M; Doheny EP; Mann E; Morgan-Jones P; Drew C; Busse-Morris M; Lowery MM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2239-2249. PubMed ID: 38819972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different Combinations of Mobility Metrics Derived From a Wearable Sensor Are Associated With Distinct Health Outcomes in Older Adults.
    Buchman AS; Dawe RJ; Leurgans SE; Curran TA; Truty T; Yu L; Barnes LL; Hausdorff JM; Bennett DA
    J Gerontol A Biol Sci Med Sci; 2020 May; 75(6):1176-1183. PubMed ID: 31246244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Locomotor requirements for bipedal locomotion: a Delphi survey.
    Hedman LD; Morris DM; Graham CL; Brown CJ; Ford MP; Ingram DA; Hilliard MJ; Salzman AJ
    Phys Ther; 2014 Jan; 94(1):52-67. PubMed ID: 23929828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium.
    Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Kirk C; Soltani A; Küderle A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Eskofier B; Fernstad S; Froehlich M; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Del Din S;
    J Neuroeng Rehabil; 2023 Jun; 20(1):78. PubMed ID: 37316858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes.
    Mokkink LB; Terwee CB; Patrick DL; Alonso J; Stratford PW; Knol DL; Bouter LM; de Vet HC
    J Clin Epidemiol; 2010 Jul; 63(7):737-45. PubMed ID: 20494804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-Clinic and Natural Gait Observations master protocol (I-CAN-GO) to validate gait using a lumbar accelerometer.
    Welbourn M; Sheriff P; Tuttle PG; Adamowicz L; Psaltos D; Kelekar A; Selig J; Messere A; Mei W; Caouette D; Ghafoor S; Santamaria M; Zhang H; Demanuele C; Karahanoglu FI; Cai X
    Sci Rep; 2024 Aug; 14(1):20128. PubMed ID: 39209869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reliability of inertial sensor based spatiotemporal gait parameters for short walking bouts in community dwelling older adults.
    Motti Ader LG; Greene BR; McManus K; Caulfield B
    Gait Posture; 2021 Mar; 85():1-6. PubMed ID: 33497966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defining and grouping children's therapeutic footwear and criteria for their prescription: an international expert Delphi consensus study.
    Hill M; Healy A; Chockalingam N
    BMJ Open; 2021 Aug; 11(8):e051381. PubMed ID: 34373314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor.
    Shahabpoor E; Pavic A
    J Biomech; 2018 Oct; 79():181-190. PubMed ID: 30195851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Impact of Environment on Gait Assessment: Considerations from Real-World Gait Analysis in Dementia Subtypes.
    Mc Ardle R; Del Din S; Donaghy P; Galna B; Thomas AJ; Rochester L
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A natural walking monitor for pulmonary patients using mobile phones.
    Juen J; Cheng Q; Schatz B
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1399-405. PubMed ID: 25935052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proposed objective scoring algorithm for walking performance, based on relevant gait metrics: the Simplified Mobility Score (SMoS™)-observational study.
    Betteridge C; Mobbs RJ; Ho D
    J Orthop Surg Res; 2021 Jul; 16(1):419. PubMed ID: 34210345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy.
    Carcreff L; Paraschiv-Ionescu A; Gerber CN; Newman CJ; Armand S; Aminian K
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.