These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 34416067)

  • 1. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases.
    Hartman MCT
    Chembiochem; 2022 Jan; 23(1):e202100299. PubMed ID: 34416067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids.
    Kwok HS; Vargas-Rodriguez O; Melnikov SV; Söll D
    ACS Chem Biol; 2019 Apr; 14(4):603-612. PubMed ID: 30933556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upgrading aminoacyl-tRNA synthetases for genetic code expansion.
    Vargas-Rodriguez O; Sevostyanova A; Söll D; Crnković A
    Curr Opin Chem Biol; 2018 Oct; 46():115-122. PubMed ID: 30059834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gleaning unexpected fruits from hard-won synthetases: probing principles of permissivity in non-canonical amino acid-tRNA synthetases.
    Cooley RB; Karplus PA; Mehl RA
    Chembiochem; 2014 Aug; 15(12):1810-9. PubMed ID: 25044993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the substrate range of wild-type aminoacyl-tRNA synthetases.
    Fan C; Ho JML; Chirathivat N; Söll D; Wang YS
    Chembiochem; 2014 Aug; 15(12):1805-1809. PubMed ID: 24890918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase.
    Iqbal ES; Dods KK; Hartman MCT
    Org Biomol Chem; 2018 Feb; 16(7):1073-1078. PubMed ID: 29367962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering aminoacyl-tRNA synthetases for use in synthetic biology.
    Krahn N; Tharp JM; Crnković A; Söll D
    Enzymes; 2020; 48():351-395. PubMed ID: 33837709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism.
    Dunkelmann DL; Piedrafita C; Dickson A; Liu KC; Elliott TS; Fiedler M; Bellini D; Zhou A; Cervettini D; Chin JW
    Nature; 2024 Jan; 625(7995):603-610. PubMed ID: 38200312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases.
    Perona JJ; Hadd A
    Biochemistry; 2012 Nov; 51(44):8705-29. PubMed ID: 23075299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids.
    Wang N; Ju T; Niu W; Guo J
    ACS Synth Biol; 2015 Mar; 4(3):207-12. PubMed ID: 24847685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.
    Hadd A; Perona JJ
    ACS Chem Biol; 2014 Dec; 9(12):2761-6. PubMed ID: 25310879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast.
    Stieglitz JT; Van Deventer JA
    ACS Synth Biol; 2022 Jul; 11(7):2284-2299. PubMed ID: 35793554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical Approaches to Genetic Code Expansion with Aminoacyl-tRNA Synthetase/tRNA Pairs.
    Natter Perdiguero A; Deliz Liang A
    Chimia (Aarau); 2024 Feb; 78(1-2):22-31. PubMed ID: 38430060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.
    Gan R; Perez JG; Carlson ED; Ntai I; Isaacs FJ; Kelleher NL; Jewett MC
    Biotechnol Bioeng; 2017 May; 114(5):1074-1086. PubMed ID: 27987323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA
    ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The central role of tRNA in genetic code expansion.
    Reynolds NM; Vargas-Rodriguez O; Söll D; Crnković A
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3001-3008. PubMed ID: 28323071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity and Constraints of tRNA Aminoacylation Define Directed Evolution of Aminoacyl-tRNA Synthetases.
    Crnković A; Vargas-Rodriguez O; Söll D
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31075874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal?
    Melnikov SV; Söll D
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31010123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprogramming the amino-acid substrate specificity of orthogonal aminoacyl-tRNA synthetases to expand the genetic code of eukaryotic cells.
    Cropp TA; Anderson JC; Chin JW
    Nat Protoc; 2007; 2(10):2590-600. PubMed ID: 17948002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.