These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34416125)
1. The Physiology and Biogeochemistry of SUP05. Morris RM; Spietz RL Ann Rev Mar Sci; 2022 Jan; 14():261-275. PubMed ID: 34416125 [TBL] [Abstract][Full Text] [Related]
2. Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Spietz RL; Lundeen RA; Zhao X; Nicastro D; Ingalls AE; Morris RM Environ Microbiol; 2019 Jul; 21(7):2391-2401. PubMed ID: 30951247 [TBL] [Abstract][Full Text] [Related]
3. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. Mattes TE; Nunn BL; Marshall KT; Proskurowski G; Kelley DS; Kawka OE; Goodlett DR; Hansell DA; Morris RM ISME J; 2013 Dec; 7(12):2349-60. PubMed ID: 23842654 [TBL] [Abstract][Full Text] [Related]
4. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669 [TBL] [Abstract][Full Text] [Related]
5. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Anantharaman K; Breier JA; Sheik CS; Dick GJ Proc Natl Acad Sci U S A; 2013 Jan; 110(1):330-5. PubMed ID: 23263870 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures. Zheng Q; Wang Y; Xie R; Lang AS; Liu Y; Lu J; Zhang X; Sun J; Suttle CA; Jiao N Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150500 [TBL] [Abstract][Full Text] [Related]
7. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Durham BP; Boysen AK; Carlson LT; Groussman RD; Heal KR; Cain KR; Morales RL; Coesel SN; Morris RM; Ingalls AE; Armbrust EV Nat Microbiol; 2019 Oct; 4(10):1706-1715. PubMed ID: 31332382 [TBL] [Abstract][Full Text] [Related]
8. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. Georges AA; El-Swais H; Craig SE; Li WK; Walsh DA ISME J; 2014 Jun; 8(6):1301-13. PubMed ID: 24401863 [TBL] [Abstract][Full Text] [Related]
9. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. Lesniewski RA; Jain S; Anantharaman K; Schloss PD; Dick GJ ISME J; 2012 Dec; 6(12):2257-68. PubMed ID: 22695860 [TBL] [Abstract][Full Text] [Related]
10. Mixotrophic chemosynthesis in a deep-sea anemone from hydrothermal vents in the Pescadero Basin, Gulf of California. Goffredi SK; Motooka C; Fike DA; Gusmão LC; Tilic E; Rouse GW; Rodríguez E BMC Biol; 2021 Jan; 19(1):8. PubMed ID: 33455582 [TBL] [Abstract][Full Text] [Related]
11. Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes. Zhou Z; Liu Y; Pan J; Cron BR; Toner BM; Anantharaman K; Breier JA; Dick GJ; Li M ISME J; 2020 Dec; 14(12):3136-3148. PubMed ID: 32820229 [TBL] [Abstract][Full Text] [Related]
12. Morphological Plasticity in a Sulfur-Oxidizing Marine Bacterium from the SUP05 Clade Enhances Dark Carbon Fixation. Shah V; Zhao X; Lundeen RA; Ingalls AE; Nicastro D; Morris RM mBio; 2019 May; 10(3):. PubMed ID: 31064824 [TBL] [Abstract][Full Text] [Related]
13. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems. Winkel M; Pjevac P; Kleiner M; Littmann S; Meyerdierks A; Amann R; Mußmann M FEMS Microbiol Ecol; 2014 Dec; 90(3):731-46. PubMed ID: 25244359 [TBL] [Abstract][Full Text] [Related]
14. Cultivation and metabolic insights of an uncultured clade, Bacteroidetes VC2.1 Bac22 (Candidatus Sulfidibacteriales ord. nov.), from deep-sea hydrothermal vents. Leng H; Zhao W; Xiao X Environ Microbiol; 2022 May; 24(5):2484-2501. PubMed ID: 35165999 [TBL] [Abstract][Full Text] [Related]
15. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. Shah V; Chang BX; Morris RM ISME J; 2017 Jan; 11(1):263-271. PubMed ID: 27434424 [TBL] [Abstract][Full Text] [Related]
16. Metabolic flexibility of SUP05 under low DO growth conditions. Mattes TE; Ingalls AE; Burke S; Morris RM Environ Microbiol; 2021 Jun; 23(6):2823-2833. PubMed ID: 32893469 [TBL] [Abstract][Full Text] [Related]
18. Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Zheng Q; Wang Y; Lu J; Lin W; Chen F; Jiao N mBio; 2020 Feb; 11(1):. PubMed ID: 32071270 [TBL] [Abstract][Full Text] [Related]
19. A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria. Buchholz HH; Bolaños LM; Bell AG; Michelsen ML; Allen MJ; Temperton B Appl Environ Microbiol; 2022 Apr; 88(7):e0025522. PubMed ID: 35311512 [TBL] [Abstract][Full Text] [Related]
20. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. Marshall KT; Morris RM ISME J; 2013 Feb; 7(2):452-5. PubMed ID: 22875135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]