These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34416178)

  • 21. Sharp wave ripples during learning stabilize the hippocampal spatial map.
    Roux L; Hu B; Eichler R; Stark E; Buzsáki G
    Nat Neurosci; 2017 Jun; 20(6):845-853. PubMed ID: 28394323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactivation predicts the consolidation of unbiased long-term cognitive maps.
    Grosmark AD; Sparks FT; Davis MJ; Losonczy A
    Nat Neurosci; 2021 Nov; 24(11):1574-1585. PubMed ID: 34663956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior.
    Robinson NTM; Descamps LAL; Russell LE; Buchholz MO; Bicknell BA; Antonov GK; Lau JYN; Nutbrown R; Schmidt-Hieber C; Häusser M
    Cell; 2020 Dec; 183(6):1586-1599.e10. PubMed ID: 33159859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallel emergence of stable and dynamic memory engrams in the hippocampus.
    Hainmueller T; Bartos M
    Nature; 2018 Jun; 558(7709):292-296. PubMed ID: 29875406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple coordinated cellular dynamics mediate CA1 map plasticity.
    Mizuta K; Nakai J; Hayashi Y; Sato M
    Hippocampus; 2021 Mar; 31(3):235-243. PubMed ID: 33452849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion.
    Zaremba JD; Diamantopoulou A; Danielson NB; Grosmark AD; Kaifosh PW; Bowler JC; Liao Z; Sparks FT; Gogos JA; Losonczy A
    Nat Neurosci; 2017 Nov; 20(11):1612-1623. PubMed ID: 28869582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hippocampal spatial memory representations in mice are heterogeneously stable.
    Levy SJ; Kinsky NR; Mau W; Sullivan DW; Hasselmo ME
    Hippocampus; 2021 Mar; 31(3):244-260. PubMed ID: 33098619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The content of hippocampal "replay".
    Pfeiffer BE
    Hippocampus; 2020 Jan; 30(1):6-18. PubMed ID: 29266510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMDA Receptor-Dependent Dynamics of Hippocampal Place Cell Ensembles.
    Hayashi Y
    J Neurosci; 2019 Jun; 39(26):5173-5182. PubMed ID: 31015340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Task-selective place cells show behaviorally driven dynamics during learning and stability during memory recall.
    Zemla R; Moore JJ; Hopkins MD; Basu J
    Cell Rep; 2022 Nov; 41(8):111700. PubMed ID: 36417882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of Hippocampal Spatial Decoding Using a Dynamic Q-Learning Method With a Relative Reward Using Theta Phase Precession.
    Chen BW; Yang SH; Lo YC; Wang CF; Wang HL; Hsu CY; Kuo YT; Chen JC; Lin SH; Pan HC; Lee SW; Yu X; Qu B; Kuo CH; Chen YY; Lai HY
    Int J Neural Syst; 2020 Sep; 30(9):2050048. PubMed ID: 32787635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling awake hippocampal reactivations with model-based bidirectional search.
    Khamassi M; Girard B
    Biol Cybern; 2020 Apr; 114(2):231-248. PubMed ID: 32065253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient cell assembly networks encode stable spatial memories.
    Babichev A; Dabaghian Y
    Sci Rep; 2017 Jun; 7(1):3959. PubMed ID: 28638123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The reorganization and reactivation of hippocampal maps predict spatial memory performance.
    Dupret D; O'Neill J; Pleydell-Bouverie B; Csicsvari J
    Nat Neurosci; 2010 Aug; 13(8):995-1002. PubMed ID: 20639874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly Responses of Hippocampal CA1 Place Cells Predict Learned Behavior in Goal-Directed Spatial Tasks on the Radial Eight-Arm Maze.
    Xu H; Baracskay P; O'Neill J; Csicsvari J
    Neuron; 2019 Jan; 101(1):119-132.e4. PubMed ID: 30503645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for navigation in unknown environments based on a reservoir of hippocampal sequences.
    Leibold C
    Neural Netw; 2020 Apr; 124():328-342. PubMed ID: 32036230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3.
    Ecker A; Bagi B; Vértes E; Steinbach-Németh O; Karlócai MR; Papp OI; Miklós I; Hájos N; Freund TF; Gulyás AI; Káli S
    Elife; 2022 Jan; 11():. PubMed ID: 35040779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recurrent network model for learning goal-directed sequences through reverse replay.
    Haga T; Fukai T
    Elife; 2018 Jul; 7():. PubMed ID: 29969098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hippocampus leads ventral striatum in replay of place-reward information.
    Lansink CS; Goltstein PM; Lankelma JV; McNaughton BL; Pennartz CM
    PLoS Biol; 2009 Aug; 7(8):e1000173. PubMed ID: 19688032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hippocampus Maintains a Coherent Map Under Reward Feature-Landmark Cue Conflict.
    Nair IR; Bhasin G; Roy D
    Front Neural Circuits; 2022; 16():878046. PubMed ID: 35558552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.