BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34416584)

  • 1. Photolysis of free chlorine and production of reactive radicals in the UV/chlorine system using polychromatic spectrum LEDs as UV sources.
    Li GQ; Huo ZY; Wu QY; Chen Z; Wu YH; Lu Y; Hu HY
    Chemosphere; 2022 Jan; 286(Pt 3):131828. PubMed ID: 34416584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources.
    Yin R; Ling L; Shang C
    Water Res; 2018 Oct; 142():452-458. PubMed ID: 29913386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water.
    Watts MJ; Linden KG
    Water Res; 2007 Jul; 41(13):2871-8. PubMed ID: 17498769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the efficacy of the UV/Chlorine process for the removal of trimethoprim: Effects of operational parameters and artificial neural networks modelling.
    Teo YS; Jafari I; Liang F; Jung Y; Van der Hoek JP; Ong SL; Hu J
    Sci Total Environ; 2022 Mar; 812():152551. PubMed ID: 34952077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced ronidazole degradation by UV-LED/chlorine compared with conventional low-pressure UV/chlorine at neutral and alkaline pH values.
    Zou XY; Lin YL; Xu B; Zhang TY; Hu CY; Cao TC; Chu WH; Pan Y; Gao NY
    Water Res; 2019 Sep; 160():296-303. PubMed ID: 31154127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV Photolysis of Mono- and Dichloramine Using UV-LEDs as Radiation Sources: Photodecay Rates and Radical Concentrations.
    Yin R; Blatchley ER; Shang C
    Environ Sci Technol; 2020 Jul; 54(13):8420-8429. PubMed ID: 32501682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse.
    Chuang YH; Chen S; Chinn CJ; Mitch WA
    Environ Sci Technol; 2017 Dec; 51(23):13859-13868. PubMed ID: 29121472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV.
    Kwon M; Yoon Y; Kim S; Jung Y; Hwang TM; Kang JW
    Sci Total Environ; 2018 Oct; 637-638():1351-1357. PubMed ID: 29801227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing radical yield from free chlorine with tailored UV light emitting diode emission spectra.
    Pimentel A; Linden KG
    Water Res; 2024 Feb; 249():120923. PubMed ID: 38064784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-scale comparison of UV/H
    Wang C; Moore N; Bircher K; Andrews S; Hofmann R
    Water Res; 2019 Sep; 161():448-458. PubMed ID: 31228664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation kinetics and pathways of β-cyclocitral and β-ionone during UV photolysis and UV/chlorination reactions.
    Kim T; Kim TK; Zoh KD
    J Environ Manage; 2019 Jun; 239():8-16. PubMed ID: 30877971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH and molar ratio of pollutant to oxidant on a photochemical advanced oxidation process using hypochlorite.
    Kishimoto N; Nishimura H
    Environ Technol; 2015; 36(19):2436-42. PubMed ID: 25809495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV/chlorinated cyanurates as an emerging advanced oxidation process for drinking water and potable reuse treatments.
    Chuang YH; Shi HJ
    Water Res; 2022 Mar; 211():118075. PubMed ID: 35066259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species.
    Wang WL; Wu QY; Huang N; Wang T; Hu HY
    Water Res; 2016 Jul; 98():190-8. PubMed ID: 27105033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: Radical roles, influencing factors, and degradation pathway.
    Ye B; Li Y; Chen Z; Wu QY; Wang WL; Wang T; Hu HY
    Water Res; 2017 Nov; 124():381-387. PubMed ID: 28783494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.
    Fang J; Zhao Q; Fan C; Shang C; Fu Y; Zhang X
    Chemosphere; 2017 Sep; 183():582-588. PubMed ID: 28570902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel UVA/ClO
    Peng J; Yin R; Yang X; Shang C
    Environ Sci Technol; 2022 Jan; 56(2):1257-1266. PubMed ID: 34978792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.
    Kong X; Jiang J; Ma J; Yang Y; Liu W; Liu Y
    Water Res; 2016 Mar; 90():15-23. PubMed ID: 26724435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of Bromine Radicals and Hydroxyl Radicals in the Degradation of Micropollutants by the UV/Bromine Process.
    Guo K; Zheng S; Zhang X; Zhao L; Ji S; Chen C; Wu Z; Wang D; Fang J
    Environ Sci Technol; 2020 May; 54(10):6415-6426. PubMed ID: 32320225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption.
    Yin R; Shang C
    Water Res; 2020 Oct; 185():116297. PubMed ID: 32818735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.