BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34416586)

  • 21. Mo
    Lu S; Lu B; Tan G; Moe W; Xu W; Wang Y; Xing D; Zhu X
    Biosens Bioelectron; 2020 Nov; 167():112491. PubMed ID: 32798808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient reduction of antimony by sulfate-reducer enriched bio-cathode with hydrogen production in a microbial electrolysis cell.
    Arulmani SRB; Dai J; Li H; Chen Z; Zhang H; Yan J; Xiao T; Sun W
    Sci Total Environ; 2021 Jun; 774():145733. PubMed ID: 33609841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics.
    Carlotta-Jones DI; Purdy K; Kirwan K; Stratford J; Coles SR
    Bioresour Technol; 2020 May; 304():122983. PubMed ID: 32086038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations.
    Escapa A; San-Martín MI; Mateos R; Morán A
    Bioresour Technol; 2015 Mar; 180():72-8. PubMed ID: 25590425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boosting hydrogen production from fermentation effluent of biomass wastes in cylindrical single-chamber microbial electrolysis cell.
    Zhang J; Chang H; Li X; Jiang B; Wei T; Sun X; Liang D
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89727-89737. PubMed ID: 35857167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Influence of substrate COD on methane production in single-chambered microbial electrolysis cell].
    Teng WK; Liu GL; Luo HP; Zhang RD; Fu SY
    Huan Jing Ke Xue; 2015 Mar; 36(3):1021-6. PubMed ID: 25929072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An MEC-MFC-coupled system for biohydrogen production from acetate.
    Sun M; Sheng GP; Zhang L; Xia CR; Mu ZX; Liu XW; Wang HL; Yu HQ; Qi R; Yu T; Yang M
    Environ Sci Technol; 2008 Nov; 42(21):8095-100. PubMed ID: 19031908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode.
    Cai W; Liu W; Han J; Wang A
    Biosens Bioelectron; 2016 Jun; 80():118-122. PubMed ID: 26807526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Commercial materials as cathode for hydrogen production in microbial electrolysis cell.
    Farhangi S; Ebrahimi S; Niasar MS
    Biotechnol Lett; 2014 Oct; 36(10):1987-92. PubMed ID: 24930101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater.
    Watson VJ; Hatzell M; Logan BE
    Bioresour Technol; 2015 Nov; 195():51-6. PubMed ID: 26051523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced etching terminal wastewater treatment and H
    Zhang J; Wang Q; Wan H; Shi Y; Huang L
    J Hazard Mater; 2023 Oct; 459():132178. PubMed ID: 37523957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linking internal resistance with design and operation decisions in microbial electrolysis cells.
    Miller A; Singh L; Wang L; Liu H
    Environ Int; 2019 May; 126():611-618. PubMed ID: 30856448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review.
    Lee HS; Xin W; Katakojwala R; Venkata Mohan S; Tabish NMD
    Bioresour Technol; 2022 Nov; 363():127934. PubMed ID: 36100184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells.
    Luo S; Liu F; Fu B; He K; Yang H; Zhang X; Liang P; Huang X
    Water Res; 2021 Aug; 201():117326. PubMed ID: 34147740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Persistent Hydrogen Production by the Photo-Assisted Microbial Electrolysis Cell Using a p-Type Polyaniline Nanofiber Cathode.
    Jeon Y; Kim S
    ChemSusChem; 2016 Dec; 9(23):3276-3279. PubMed ID: 27882683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High surface area stainless steel brushes as cathodes in microbial electrolysis cells.
    Call DF; Merrill MD; Logan BE
    Environ Sci Technol; 2009 Mar; 43(6):2179-83. PubMed ID: 19368232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid degradation of 2,4-dichloronitrobenzene in single-chamber microbial electrolysis cell with pre-acclimated bioanode: A comprehensive assessment.
    Liu Y; Wang C; Zhang K; Zhou Y; Xu Y; Xu X; Zhu L
    Sci Total Environ; 2020 Jul; 724():138053. PubMed ID: 32247974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scale-up and techno-economic analysis of microbial electrolysis cells for hydrogen production from wastewater.
    Jiang J; Lopez-Ruiz JA; Bian Y; Sun D; Yan Y; Chen X; Zhu J; May HD; Ren ZJ
    Water Res; 2023 Aug; 241():120139. PubMed ID: 37270949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.