These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 34416661)
1. Biocrude oil production via hydrothermal liquefaction of food waste in a simplified high-throughput reactor. Saengsuriwong R; Onsree T; Phromphithak S; Tippayawong N Bioresour Technol; 2021 Dec; 341():125750. PubMed ID: 34416661 [TBL] [Abstract][Full Text] [Related]
2. Conversion of tobacco processing waste to biocrude oil via hydrothermal liquefaction in a multiple batch reactor. Saengsuriwong R; Onsree T; Phromphithak S; Tippayawong N Clean Technol Environ Policy; 2023; 25(2):397-407. PubMed ID: 34149340 [TBL] [Abstract][Full Text] [Related]
3. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Xu D; Savage PE Bioresour Technol; 2017 Sep; 239():1-6. PubMed ID: 28500883 [TBL] [Abstract][Full Text] [Related]
4. Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Neveux N; Yuen AK; Jazrawi C; Magnusson M; Haynes BS; Masters AF; Montoya A; Paul NA; Maschmeyer T; de Nys R Bioresour Technol; 2014 Mar; 155():334-41. PubMed ID: 24463408 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermal liquefaction of lignocellulosic biomass with potassium phosphate and iron and their binary mixture: A comprehensive investigation on the yields and compositions of biocrude and solid residue. Chen F; Wang Y; Zheng L; Wu L; Ding X Bioresour Technol; 2023 Oct; 386():129532. PubMed ID: 37479044 [TBL] [Abstract][Full Text] [Related]
6. Solvothermal liquefaction of orange peels into biocrude: An experimental investigation of biocrude yield and energy compositional dependency on process variables. Kariim I; Park JY; Kazmi WW; Swai H; Lee IG; Kivevele T Bioresour Technol; 2024 Jan; 391(Pt A):129928. PubMed ID: 37914051 [TBL] [Abstract][Full Text] [Related]
7. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S Bioresour Technol; 2014 Oct; 170():20-29. PubMed ID: 25118149 [TBL] [Abstract][Full Text] [Related]
8. Understanding the effect of heating rate on hydrothermal liquefaction: A comprehensive investigation from model compounds to a real food waste. Tito E; Marcolongo CA; Pipitone G; Monteverde AHA; Bensaid S; Pirone R Bioresour Technol; 2024 Mar; 396():130446. PubMed ID: 38367926 [TBL] [Abstract][Full Text] [Related]
9. Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction. Li H; Wang M; Wang X; Zhang Y; Lu H; Duan N; Li B; Zhang D; Dong T; Liu Z Sci Total Environ; 2018 Sep; 635():70-77. PubMed ID: 29660729 [TBL] [Abstract][Full Text] [Related]
10. Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor. Ly HV; Tran QK; Kim SS; Kim J; Choi SS; Oh C Environ Pollut; 2021 Apr; 275():116023. PubMed ID: 33582642 [TBL] [Abstract][Full Text] [Related]
11. Research progress and hot spots of hydrothermal liquefaction for bio-oil production based on bibliometric analysis. Yang J; Hong C; Xing Y; Zheng Z; Li Z; Zhao X; Qi C Environ Sci Pollut Res Int; 2021 Feb; 28(7):7621-7635. PubMed ID: 33398733 [TBL] [Abstract][Full Text] [Related]
12. Hydrothermal liquefaction of composite household waste to biocrude: the effect of liquefaction solvents on product yield and quality. Vaishnavi M; Sathishkumar K; Gopinath KP Environ Sci Pollut Res Int; 2024 Jun; 31(27):39760-39773. PubMed ID: 38833053 [TBL] [Abstract][Full Text] [Related]
13. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Faeth JL; Savage PE Bioresour Technol; 2016 Apr; 206():290-293. PubMed ID: 26879204 [TBL] [Abstract][Full Text] [Related]
14. Compositional analysis of bio-oils from hydrothermal liquefaction of tobacco residues using two-dimensional gas chromatography and time-of-flight mass spectrometry. Phromphithak S; Onsree T; Saengsuriwong R; Tippayawong N Sci Prog; 2021 Oct; 104(4):368504211064486. PubMed ID: 34935550 [TBL] [Abstract][Full Text] [Related]
15. Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Dandamudi KPR; Muppaneni T; Sudasinghe N; Schaub T; Holguin FO; Lammers PJ; Deng S Bioresour Technol; 2017 Jul; 236():129-137. PubMed ID: 28399416 [TBL] [Abstract][Full Text] [Related]
16. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery. Chen J Bioresour Technol; 2018 Oct; 265():320-327. PubMed ID: 29909362 [TBL] [Abstract][Full Text] [Related]
18. Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions. Aierzhati A; Stablein MJ; Wu NE; Kuo CT; Si B; Kang X; Zhang Y Bioresour Technol; 2019 Jul; 284():139-147. PubMed ID: 30927651 [TBL] [Abstract][Full Text] [Related]
19. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C; Li Y; Peng N; Fan A; Liu Z Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472 [TBL] [Abstract][Full Text] [Related]
20. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water. Xu C; Lancaster J Water Res; 2008 Mar; 42(6-7):1571-82. PubMed ID: 18048075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]