These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34416698)

  • 1. Catalytic ozonation of VOCs at low temperature: A comprehensive review.
    Liu B; Ji J; Zhang B; Huang W; Gan Y; Leung DYC; Huang H
    J Hazard Mater; 2022 Jan; 422():126847. PubMed ID: 34416698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation.
    Wu M; Huang H; Leung DYC
    J Environ Manage; 2022 Apr; 307():114559. PubMed ID: 35066195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental insights and recent advances in catalytic oxidation processes using ozone for the control of volatile organic compounds.
    Einaga H; Zheng X
    Environ Sci Pollut Res Int; 2024 Jul; 31(31):43540-43560. PubMed ID: 38909152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and pitfalls in the investigation of the catalytic ozonation mechanism: A critical review.
    Wang Y; Yu G
    J Hazard Mater; 2022 Aug; 436():129157. PubMed ID: 35605501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review.
    Lee JE; Ok YS; Tsang DCW; Song J; Jung SC; Park YK
    Sci Total Environ; 2020 Jun; 719():137405. PubMed ID: 32114230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic ozonation of multi-VOCs mixtures over Cr-based bimetallic oxides catalysts from simulated flue gas: Effects of NO/SO
    Liu P; Tang H; Shao J; He Y; Zhu Y; Alegria ECBA; Wang Z; Pombeiro AJL
    Chemosphere; 2023 Nov; 340():139851. PubMed ID: 37597623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Temperature Catalytic Ozonation of Multitype VOCs over Zeolite-Supported Catalysts.
    Shao J; Zhai Y; Zhang L; Xiang L; Lin F
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation: Review and prospect.
    Sun X; Li C; Yu B; Wang J; Wang W
    J Environ Sci (China); 2023 Mar; 125():427-442. PubMed ID: 36375926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process.
    Chen WR; Sharpless CM; Linden KG; Suffet IH
    Environ Sci Technol; 2006 Apr; 40(8):2734-9. PubMed ID: 16683616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on Catalytic Oxidation of VOCs at Ambient Temperature.
    Zhao R; Wang H; Zhao D; Liu R; Liu S; Fu J; Zhang Y; Ding H
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the synergy effect of MnOx and support on catalytic ozonation of toluene.
    Dong Y; Sun J; Ma X; Wang W; Song Z; Zhao X; Mao Y; Li W
    Chemosphere; 2022 Sep; 303(Pt 1):134991. PubMed ID: 35597453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5.
    Shu Y; He M; Ji J; Huang H; Liu S; Leung DYC
    J Hazard Mater; 2019 Feb; 364():770-779. PubMed ID: 30447561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt/MnO
    Xu Z; Mo S; Li Y; Zhang Y; Wu J; Fu M; Niu X; Hu Y; Ye D
    Chemosphere; 2022 Jan; 286(Pt 3):131754. PubMed ID: 34399263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement Effect Induced by the Second Metal to Promote Ozone Catalytic Oxidation of VOCs.
    Liu L; Wu N; Ouyang M; Xing Y; Tian J; Chen P; Wu J; Hu Y; Niu X; Fu M; Ye D
    Environ Sci Technol; 2024 Apr; 58(15):6725-6735. PubMed ID: 38565876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic ozonation of CH
    Xiang L; Lin F; Cai B; Li G; Zhang L; Wang Z; Yan B; Wang Y; Chen G
    J Hazard Mater; 2022 Aug; 436():129217. PubMed ID: 35739739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of catalytic ozonation for elimination of methyldopa with Fe
    Xiong P; Fan S; Song J; Dai Q
    Water Environ Res; 2021 Dec; 93(12):2903-2913. PubMed ID: 34363642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.
    Sun Q; Wang Y; Li L; Bing J; Wang Y; Yan H
    J Hazard Mater; 2015 Apr; 286():276-84. PubMed ID: 25590821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst.
    Chen YH; Hsieh DC; Shang NC
    J Hazard Mater; 2011 Sep; 192(3):1017-25. PubMed ID: 21724322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water.
    Rodríguez EM; Márquez G; León EA; Álvarez PM; Amat AM; Beltrán FJ
    J Environ Manage; 2013 Sep; 127():114-24. PubMed ID: 23685272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A core-shell Mn-C@Fe nanocatalyst under ozone activation for efficient organic degradation: Surface-mediated non-radical oxidation.
    Guo Z; Zhang Y; Wang D
    Chemosphere; 2021 Oct; 281():130895. PubMed ID: 34289604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.