These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 34416846)
1. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Eftekharpour E; Fernyhough P Antioxid Redox Signal; 2022 Sep; 37(7-9):578-596. PubMed ID: 34416846 [No Abstract] [Full Text] [Related]
2. Hyperglycemia in a type 1 Diabetes Mellitus model causes a shift in mitochondria coupled-glucose phosphorylation and redox metabolism in rat brain. Silva-Rodrigues T; de-Souza-Ferreira E; Machado CM; Cabral-Braga B; Rodrigues-Ferreira C; Galina A Free Radic Biol Med; 2020 Nov; 160():796-806. PubMed ID: 32949665 [TBL] [Abstract][Full Text] [Related]
3. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Akude E; Zherebitskaya E; Chowdhury SK; Smith DR; Dobrowsky RT; Fernyhough P Diabetes; 2011 Jan; 60(1):288-97. PubMed ID: 20876714 [TBL] [Abstract][Full Text] [Related]
4. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients. Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889 [TBL] [Abstract][Full Text] [Related]
5. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Stefano GB; Challenger S; Kream RM Eur J Nutr; 2016 Dec; 55(8):2339-2345. PubMed ID: 27084094 [TBL] [Abstract][Full Text] [Related]
6. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Singh-Mallah G; Nair S; Sandberg M; Mallard C; Hagberg H Antioxid Redox Signal; 2019 Sep; 31(9):643-663. PubMed ID: 30957515 [No Abstract] [Full Text] [Related]
7. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy. Duong QV; Levitsky Y; Dessinger MJ; Strubbe-Rivera JO; Bazil JN Function (Oxf); 2021; 2(6):zqab050. PubMed ID: 35330793 [TBL] [Abstract][Full Text] [Related]
8. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption. Okoye CN; MacDonald-Jay N; Kamunde C Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen peroxide production is not primarily increased in human myotubes established from type 2 diabetic subjects. Minet AD; Gaster M J Clin Endocrinol Metab; 2011 Sep; 96(9):E1486-90. PubMed ID: 21733990 [TBL] [Abstract][Full Text] [Related]
10. High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: Implications for cerebral microvascular disease in diabetes. Shah GN; Morofuji Y; Banks WA; Price TO Biochem Biophys Res Commun; 2013 Oct; 440(2):354-8. PubMed ID: 24076121 [TBL] [Abstract][Full Text] [Related]
11. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Brand MD Crit Rev Biochem Mol Biol; 2020 Dec; 55(6):592-661. PubMed ID: 33148057 [TBL] [Abstract][Full Text] [Related]
12. Time-course effect of high-glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells. Al-Kafaji G; Sabry MA; Skrypnyk C Cell Biol Int; 2016 Jan; 40(1):36-48. PubMed ID: 26251331 [TBL] [Abstract][Full Text] [Related]
13. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Kalyanaraman B; Cheng G; Hardy M; Ouari O; Bennett B; Zielonka J Redox Biol; 2018 May; 15():347-362. PubMed ID: 29306792 [TBL] [Abstract][Full Text] [Related]
14. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Ni R; Cao T; Xiong S; Ma J; Fan GC; Lacefield JC; Lu Y; Le Tissier S; Peng T Free Radic Biol Med; 2016 Jan; 90():12-23. PubMed ID: 26577173 [TBL] [Abstract][Full Text] [Related]
15. Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH. Velayutham M; Hemann C; Zweier JL Free Radic Biol Med; 2011 Jul; 51(1):160-70. PubMed ID: 21545835 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Brand MD Free Radic Biol Med; 2016 Nov; 100():14-31. PubMed ID: 27085844 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels. Mailloux RJ Oxid Med Cell Longev; 2018; 2018():7857251. PubMed ID: 30057684 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress. Banh S; Wiens L; Sotiri E; Treberg JR Comp Biochem Physiol B Biochem Mol Biol; 2016 Jan; 191():99-107. PubMed ID: 26456509 [TBL] [Abstract][Full Text] [Related]
19. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Mailloux RJ Redox Biol; 2015; 4():381-98. PubMed ID: 25744690 [TBL] [Abstract][Full Text] [Related]
20. An update on methods and approaches for interrogating mitochondrial reactive oxygen species production. Mailloux RJ Redox Biol; 2021 Sep; 45():102044. PubMed ID: 34157640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]