These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 34416846)

  • 21. Oxidative stress and programmed cell death in diabetic neuropathy.
    Vincent AM; Brownlee M; Russell JW
    Ann N Y Acad Sci; 2002 Apr; 959():368-83. PubMed ID: 11976211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A radical shift in perspective: mitochondria as regulators of reactive oxygen species.
    Munro D; Treberg JR
    J Exp Biol; 2017 Apr; 220(Pt 7):1170-1180. PubMed ID: 28356365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into the respiratory chain and oxidative stress.
    Larosa V; Remacle C
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30201689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations.
    Brennan LA; Kantorow M
    Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease.
    Dikalov SI; Nazarewicz RR
    Antioxid Redox Signal; 2013 Oct; 19(10):1085-94. PubMed ID: 22443458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Association of Neuronal Stress with Activating Transcription Factor 3 in Dorsal Root Ganglion of in vivo and in vitro Models of Bortezomib- Induced Neuropathy.
    Yin Y; Qi X; Qiao Y; Liu H; Yan Z; Li H; Liu Z
    Curr Cancer Drug Targets; 2019; 19(1):50-64. PubMed ID: 30289077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity.
    Hart CR; Layec G; Trinity JD; Kwon OS; Zhao J; Reese VR; Gifford JR; Richardson RS
    Exp Physiol; 2018 Jun; 103(6):838-850. PubMed ID: 29604234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes.
    Tocchetti CG; Stanley BA; Sivakumaran V; Bedja D; O'Rourke B; Paolocci N; Cortassa S; Aon MA
    Clin Sci (Lond); 2015 Oct; 129(7):561-74. PubMed ID: 26186741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes.
    Singh A; Kukreti R; Saso L; Kukreti S
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial superoxide and coenzyme Q in insulin-deficient rats: increased electron leak.
    Herlein JA; Fink BD; Henry DM; Yorek MA; Teesch LM; Sivitz WI
    Am J Physiol Regul Integr Comp Physiol; 2011 Dec; 301(6):R1616-24. PubMed ID: 21940403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial superoxide anions induced by exogenous oxidative stress determine tumor cell fate: an individual cell-based study.
    Pan H; Wang BH; Li ZB; Gong XG; Qin Y; Jiang Y; Han WL
    J Zhejiang Univ Sci B; 2019 Apr.; 20(4):310-321. PubMed ID: 30932376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial Reactive Oxygen Species and Type 1 Diabetes.
    Chen J; Stimpson SE; Fernandez-Bueno GA; Mathews CE
    Antioxid Redox Signal; 2018 Nov; 29(14):1361-1372. PubMed ID: 29295631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of mitochondrial site-specific hydrogen peroxide efflux by exogenous stressors.
    Okoye CN; Stevens D; Kamunde C
    Free Radic Biol Med; 2021 Feb; 164():439-456. PubMed ID: 33383085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC.
    Patel H; Chen J; Das KC; Kavdia M
    Cardiovasc Diabetol; 2013 Oct; 12():142. PubMed ID: 24093550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species.
    Rojas DR; Tegeder I; Kuner R; Agarwal N
    J Mol Med (Berl); 2018 Dec; 96(12):1395-1405. PubMed ID: 30361814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers.
    Park J; Lee J; Choi C
    PLoS One; 2011; 6(8):e23211. PubMed ID: 21829717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide.
    Lee YM; He W; Liou YC
    Cell Death Dis; 2021 Jan; 12(1):58. PubMed ID: 33431811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-fat diet induces an initial adaptation of mitochondrial bioenergetics in the kidney despite evident oxidative stress and mitochondrial ROS production.
    Ruggiero C; Ehrenshaft M; Cleland E; Stadler K
    Am J Physiol Endocrinol Metab; 2011 Jun; 300(6):E1047-58. PubMed ID: 21386058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.