These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. [Formation of the laryngeal sound in the phonation]. Chouard CH Presse Med (1893); 1969 Mar; 77(16):583-6. PubMed ID: 5783379 [No Abstract] [Full Text] [Related]
5. [Micromodulations of vocal air output induced by vibration of the vocal cords]. Sneppe R Electrodiagn Ther; 1979; 16(4):210-8. PubMed ID: 527541 [No Abstract] [Full Text] [Related]
7. Kinematics of the prominentia laryngea at phonation onset. Pesák J Folia Phoniatr (Basel); 1993; 45(4):165-72. PubMed ID: 8406266 [TBL] [Abstract][Full Text] [Related]
8. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation]. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402 [TBL] [Abstract][Full Text] [Related]
9. [Electromyography of the internal laryngeal muscles in various phonation types]. Zboril M Arch Ohren Nasen Kehlkopfheilkd; 1965 Jul; 184(5):443-9. PubMed ID: 5848251 [No Abstract] [Full Text] [Related]
10. [Elementary muscular mechanisms for regulation of tension of the vocal cords in phonation]. Dejonckere P Folia Phoniatr (Basel); 1980; 32(1):1-13. PubMed ID: 7380367 [No Abstract] [Full Text] [Related]
11. [Functional and experimental investigations on phonation of the primates with special reference to the spontaneous muffling of the vocal cords during vibration]. Minnigerode B Arch Ohren Nasen Kehlkopfheilkd; 1965 Jul; 184(5):403-10. PubMed ID: 5848248 [No Abstract] [Full Text] [Related]
12. Mechanism of the setting in oscillatory motion of the human vocal folds [proceedings]. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1980 Feb; 88(1):P8-P9. PubMed ID: 6155877 [No Abstract] [Full Text] [Related]
13. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments. Tokuda IT; Horácek J; Svec JG; Herzel H J Acoust Soc Am; 2007 Jul; 122(1):519-31. PubMed ID: 17614509 [TBL] [Abstract][Full Text] [Related]
14. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study. Titze IR; Laukkanen AM Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981 [TBL] [Abstract][Full Text] [Related]
15. On the relation between subglottal pressure and fundamental frequency in phonation. Titze IR J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005 [TBL] [Abstract][Full Text] [Related]
16. Glottography, the electrophysiological investigation of phonatory biomechanics. Kitzing P Acta Otorhinolaryngol Belg; 1986; 40(6):863-78. PubMed ID: 3551483 [TBL] [Abstract][Full Text] [Related]
17. Laryngeal modeling: theoretical, in vitro, in vivo. Berke GS; Moore DM; Hantke DR; Hanson DG; Gerratt BR; Burstein F Laryngoscope; 1987 Jul; 97(7 Pt 1):871-81. PubMed ID: 3600140 [TBL] [Abstract][Full Text] [Related]
18. Aerodynamics of the human larynx during vocal fold vibration. Plant RL Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149 [TBL] [Abstract][Full Text] [Related]
19. Anatomy and physiology of the larynx. Noordzij JP; Ossoff RH Otolaryngol Clin North Am; 2006 Feb; 39(1):1-10. PubMed ID: 16469651 [No Abstract] [Full Text] [Related]