BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34417156)

  • 1. Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure.
    Scaffa A; Yao H; Oulhen N; Wallace J; Peterson AL; Rizal S; Ragavendran A; Wessel G; De Paepe ME; Dennery PA
    Redox Biol; 2021 Dec; 48():102091. PubMed ID: 34417156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury.
    Grimm SL; Reddick S; Dong X; Leek C; Wang AX; Gutierrez MC; Hartig SM; Moorthy B; Coarfa C; Lingappan K
    Biol Sex Differ; 2023 Aug; 14(1):50. PubMed ID: 37553579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD).
    Maturu P; Wei-Liang Y; Androutsopoulos VP; Jiang W; Wang L; Tsatsakis AM; Couroucli XI
    Food Chem Toxicol; 2018 Apr; 114():23-33. PubMed ID: 29432836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension.
    Gong J; Feng Z; Peterson AL; Carr JF; Vang A; Braza J; Choudhary G; Dennery PA; Yao H
    J Pathol; 2020 Dec; 252(4):411-422. PubMed ID: 32815166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Newborn Mice Lacking the Gene for Cyp1a1 Are More Susceptible to Oxygen-Mediated Lung Injury, and Are Rescued by Postnatal β-Naphthoflavone Administration: Implications for Bronchopulmonary Dysplasia in Premature Infants.
    Maturu P; Wei-Liang Y; Jiang W; Wang L; Lingappan K; Barrios R; Liang Y; Moorthy B; Couroucli XI
    Toxicol Sci; 2017 May; 157(1):260-271. PubMed ID: 28201809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cumulative effects of neonatal hyperoxia on murine alveolar structure and function.
    Cox AM; Gao Y; Perl AT; Tepper RS; Ahlfeld SK
    Pediatr Pulmonol; 2017 May; 52(5):616-624. PubMed ID: 28186703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered small airways in aged mice following neonatal exposure to hyperoxic gas.
    O'Reilly M; Harding R; Sozo F
    Neonatology; 2014; 105(1):39-45. PubMed ID: 24281398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication.
    Bozyk PD; Bentley JK; Popova AP; Anyanwu AC; Linn MD; Goldsmith AM; Pryhuber GS; Moore BB; Hershenson MB
    PLoS One; 2012; 7(2):e31336. PubMed ID: 22363622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelsolin Attenuates Neonatal Hyperoxia-Induced Inflammatory Responses to Rhinovirus Infection and Preserves Alveolarization.
    Cui TX; Brady AE; Zhang YJ; Fulton CT; Popova AP
    Front Immunol; 2022; 13():792716. PubMed ID: 35173718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial to mesenchymal transition in neonatal hyperoxic lung injury: role of sex as a biological variable.
    Cantu A; Cantu Gutierrez M; Zhang Y; Dong X; Lingappan K
    Physiol Genomics; 2023 Aug; 55(8):345-354. PubMed ID: 37395632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable sex-specific differences at single-cell resolution in neonatal hyperoxic lung injury.
    Cantu A; Gutierrez MC; Dong X; Leek C; Sajti E; Lingappan K
    Am J Physiol Lung Cell Mol Physiol; 2023 Jan; 324(1):L5-L31. PubMed ID: 36283964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting p16
    Zysman M; Baptista BR; Essari LA; Taghizadeh S; Thibault de Ménonville C; Giffard C; Issa A; Franco-Montoya ML; Breau M; Souktani R; Aissat A; Caeymaex L; Lizé M; Van Nhieu JT; Jung C; Rottier R; Cruzeiro MD; Adnot S; Epaud R; Chabot F; Lanone S; Boczkowski J; Boyer L
    Am J Respir Crit Care Med; 2020 Oct; 202(8):1088-1104. PubMed ID: 32628504
    [No Abstract]   [Full Text] [Related]  

  • 13. Nanoparticle Delivery of Proangiogenic Transcription Factors into the Neonatal Circulation Inhibits Alveolar Simplification Caused by Hyperoxia.
    Bolte C; Ustiyan V; Ren X; Dunn AW; Pradhan A; Wang G; Kolesnichenko OA; Deng Z; Zhang Y; Shi D; Greenberg JM; Jobe AH; Kalin TV; Kalinichenko VV
    Am J Respir Crit Care Med; 2020 Jul; 202(1):100-111. PubMed ID: 32240596
    [No Abstract]   [Full Text] [Related]  

  • 14. Neonatal hyperoxia induces activated pulmonary cellular states and sex-dependent transcriptomic changes in a model of experimental bronchopulmonary dysplasia.
    Xia S; Vila Ellis L; Winkley K; Menden H; Mabry SM; Venkatraman A; Louiselle D; Gibson M; Grundberg E; Chen J; Sampath V
    Am J Physiol Lung Cell Mol Physiol; 2023 Feb; 324(2):L123-L140. PubMed ID: 36537711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia.
    Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB
    Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Early Life Antibiotic Exposure and Neonatal Hyperoxia on the Murine Microbiome and Lung Injury.
    Althouse MH; Stewart C; Jiang W; Moorthy B; Lingappan K
    Sci Rep; 2019 Oct; 9(1):14992. PubMed ID: 31628395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of cytochrome P450 (CYP)1B1 mitigates hyperoxia response in adult mouse lung by reprogramming metabolism and translation.
    Grimm SL; Stading RE; Robertson MJ; Gandhi T; Fu C; Jiang W; Xia G; Lingappan K; Coarfa C; Moorthy B
    Redox Biol; 2023 Aug; 64():102790. PubMed ID: 37348155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent hypoxia during recovery from neonatal hyperoxic lung injury causes long-term impairment of alveolar development: A new rat model of BPD.
    Mankouski A; Kantores C; Wong MJ; Ivanovska J; Jain A; Benner EJ; Mason SN; Tanswell AK; Auten RL; Jankov RP
    Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L208-L216. PubMed ID: 27913427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of inflammatory cell trafficking and alveolar simplification by the heme oxygenase-1 product carbon monoxide.
    Anyanwu AC; Bentley JK; Popova AP; Malas O; Alghanem H; Goldsmith AM; Hershenson MB; Pinsky DJ
    Am J Physiol Lung Cell Mol Physiol; 2014 Apr; 306(8):L749-63. PubMed ID: 24532288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenatal administration of the cytochrome P4501A inducer, Β-naphthoflavone (BNF), attenuates hyperoxic lung injury in newborn mice: implications for bronchopulmonary dysplasia (BPD) in premature infants.
    Couroucli XI; Liang YH; Jiang W; Wang L; Barrios R; Yang P; Moorthy B
    Toxicol Appl Pharmacol; 2011 Oct; 256(2):83-94. PubMed ID: 21745492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.