These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34417448)

  • 1. Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair.
    Jamsen JA; Sassa A; Perera L; Shock DD; Beard WA; Wilson SH
    Nat Commun; 2021 Aug; 12(1):5055. PubMed ID: 34417448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide.
    Jamsen JA; Sassa A; Shock DD; Beard WA; Wilson SH
    Nat Commun; 2021 Apr; 12(1):2059. PubMed ID: 33824325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide.
    Freudenthal BD; Beard WA; Perera L; Shock DD; Kim T; Schlick T; Wilson SH
    Nature; 2015 Jan; 517(7536):635-9. PubMed ID: 25409153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and structural characterization of oxidized ribonucleotide insertion into DNA by human DNA polymerase β.
    Smith MR; Alnajjar KS; Hoitsma NM; Sweasy JB; Freudenthal BD
    J Biol Chem; 2020 Feb; 295(6):1613-1622. PubMed ID: 31892517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate.
    Çağlayan M
    Sci Rep; 2020 Jan; 10(1):940. PubMed ID: 31969622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.
    Jamsen JA; Beard WA; Pedersen LC; Shock DD; Moon AF; Krahn JM; Bebenek K; Kunkel TA; Wilson SH
    Nat Commun; 2017 Aug; 8(1):253. PubMed ID: 28811466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pol μ dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate.
    Çağlayan M; Wilson SH
    Nat Commun; 2018 Oct; 9(1):4213. PubMed ID: 30310068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural snapshots of human DNA polymerase μ engaged on a DNA double-strand break.
    Kaminski AM; Pryor JM; Ramsden DA; Kunkel TA; Pedersen LC; Bebenek K
    Nat Commun; 2020 Sep; 11(1):4784. PubMed ID: 32963245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonucleolytic resection is required for repair of strand displaced nonhomologous end-joining intermediates.
    Bartlett EJ; Brissett NC; Doherty AJ
    Proc Natl Acad Sci U S A; 2013 May; 110(22):E1984-91. PubMed ID: 23671117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerase mu is a DNA-directed DNA/RNA polymerase.
    Nick McElhinny SA; Ramsden DA
    Mol Cell Biol; 2003 Apr; 23(7):2309-15. PubMed ID: 12640116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining.
    Pryor JM; Conlin MP; Carvajal-Garcia J; Luedeman ME; Luthman AJ; Small GW; Ramsden DA
    Science; 2018 Sep; 361(6407):1126-1129. PubMed ID: 30213916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural evidence for an in
    Loc'h J; Gerodimos CA; Rosario S; Tekpinar M; Lieber MR; Delarue M
    J Biol Chem; 2019 Jul; 294(27):10579-10595. PubMed ID: 31138645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of a mycobacterial NHEJ DNA repair polymerase.
    Pitcher RS; Brissett NC; Picher AJ; Andrade P; Juarez R; Thompson D; Fox GC; Blanco L; Doherty AJ
    J Mol Biol; 2007 Feb; 366(2):391-405. PubMed ID: 17174332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained active site rigidity during synthesis by human DNA polymerase μ.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nat Struct Mol Biol; 2014 Mar; 21(3):253-60. PubMed ID: 24487959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase μ is a global player in the repair of non-homologous end-joining substrates.
    Chayot R; Montagne B; Ricchetti M
    DNA Repair (Amst); 2012 Jan; 11(1):22-34. PubMed ID: 22071146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected behavior of DNA polymerase Mu opposite template 8-oxo-7,8-dihydro-2'-guanosine.
    Kaminski AM; Chiruvella KK; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2019 Sep; 47(17):9410-9422. PubMed ID: 31435651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3'-OH monoribonucleotide.
    Zhu H; Shuman S
    J Biol Chem; 2008 Mar; 283(13):8331-9. PubMed ID: 18203718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda.
    Burak MJ; Guja KE; Garcia-Diaz M
    Nucleic Acids Res; 2015 Sep; 43(16):8089-99. PubMed ID: 26220180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.