These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 34417848)
21. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Choi YS; Bae S; Chang JH; Kang SG; Kim SH; Kim J; Rim TH; Choi SH; Jain R; Lee SK Neuro Oncol; 2021 Feb; 23(2):304-313. PubMed ID: 32706862 [TBL] [Abstract][Full Text] [Related]
22. Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features. Ning Z; Luo J; Xiao Q; Cai L; Chen Y; Yu X; Wang J; Zhang Y Ann Transl Med; 2021 Feb; 9(4):298. PubMed ID: 33708925 [TBL] [Abstract][Full Text] [Related]
23. Investigation of radiomics and deep convolutional neural networks approaches for glioma grading. Aouadi S; Torfeh T; Arunachalam Y; Paloor S; Riyas M; Hammoud R; Al-Hammadi N Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36898146 [No Abstract] [Full Text] [Related]
24. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas. Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703 [TBL] [Abstract][Full Text] [Related]
25. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Wang H; Hu D; Yao H; Chen M; Li S; Chen H; Luo J; Feng Y; Guo Y Eur Radiol; 2019 Nov; 29(11):6182-6190. PubMed ID: 31016445 [TBL] [Abstract][Full Text] [Related]
26. Deep Learning Radiomics to Predict PTEN Mutation Status From Magnetic Resonance Imaging in Patients With Glioma. Chen H; Lin F; Zhang J; Lv X; Zhou J; Li ZC; Chen Y Front Oncol; 2021; 11():734433. PubMed ID: 34671557 [TBL] [Abstract][Full Text] [Related]
27. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification. Li X; Qin G; He Q; Sun L; Zeng H; He Z; Chen W; Zhen X; Zhou L Eur Radiol; 2020 Feb; 30(2):778-788. PubMed ID: 31691121 [TBL] [Abstract][Full Text] [Related]
28. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related]
29. Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China. Xiang Y; Dong X; Zeng C; Liu J; Liu H; Hu X; Feng J; Du S; Wang J; Han Y; Luo Q; Chen S; Li Y Front Immunol; 2022; 13():913703. PubMed ID: 35720336 [TBL] [Abstract][Full Text] [Related]
30. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478 [TBL] [Abstract][Full Text] [Related]
31. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy. Ma M; Gan L; Liu Y; Jiang Y; Xin L; Liu Y; Qin N; Cheng Y; Liu Q; Xu L; Zhang Y; Wang X; Zhang X; Ye J; Wang X Eur J Radiol; 2022 Jan; 146():110095. PubMed ID: 34890936 [TBL] [Abstract][Full Text] [Related]
32. A quantitative SVM approach potentially improves the accuracy of magnetic resonance spectroscopy in the preoperative evaluation of the grades of diffuse gliomas. Qi C; Li Y; Fan X; Jiang Y; Wang R; Yang S; Meng L; Jiang T; Li S Neuroimage Clin; 2019; 23():101835. PubMed ID: 31035232 [TBL] [Abstract][Full Text] [Related]
33. Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas. Han W; Qin L; Bay C; Chen X; Yu KH; Miskin N; Li A; Xu X; Young G AJNR Am J Neuroradiol; 2020 Jan; 41(1):40-48. PubMed ID: 31857325 [TBL] [Abstract][Full Text] [Related]
34. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
35. A Study on Prognosis of Diffuse Glioma Based on Clinical Factors and Magnetic Resonance Imaging Radiomics. Huang D; Gao T; Zhang Y; Lyu X; Liu S; Chen Y; Su C; Hu W; Lv Y World Neurosurg; 2024 Jun; 186():e514-e530. PubMed ID: 38583562 [TBL] [Abstract][Full Text] [Related]
36. Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas. Wu S; Meng J; Yu Q; Li P; Fu S J Cancer Res Clin Oncol; 2019 Mar; 145(3):543-550. PubMed ID: 30719536 [TBL] [Abstract][Full Text] [Related]
37. Multiparametric MRI Radiomics for the Early Prediction of Response to Chemoradiotherapy in Patients With Postoperative Residual Gliomas: An Initial Study. Zhang Z; He K; Wang Z; Zhang Y; Wu D; Zeng L; Zeng J; Ye Y; Gu T; Xiao X Front Oncol; 2021; 11():779202. PubMed ID: 34869030 [TBL] [Abstract][Full Text] [Related]
38. Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour. Su C; Jiang J; Zhang S; Shi J; Xu K; Shen N; Zhang J; Li L; Zhao L; Zhang J; Qin Y; Liu Y; Zhu W Eur Radiol; 2019 Apr; 29(4):1986-1996. PubMed ID: 30315419 [TBL] [Abstract][Full Text] [Related]
39. Multiparametric MRI-Based Radiomics Model for Predicting H3 K27M Mutant Status in Diffuse Midline Glioma: A Comparative Study Across Different Sequences and Machine Learning Techniques. Guo W; She D; Xing Z; Lin X; Wang F; Song Y; Cao D Front Oncol; 2022; 12():796583. PubMed ID: 35311083 [TBL] [Abstract][Full Text] [Related]
40. Machine learning-based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study. He Z; Mao Y; Lu S; Tan L; Xiao J; Tan P; Zhang H; Li G; Yan H; Tan J; Huang D; Qiu Y; Zhang X; Wang X; Liu Y Eur Radiol; 2022 Dec; 32(12):8099-8110. PubMed ID: 35748897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]