BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34417934)

  • 1. Bivalent Regulation and Related Mechanisms of H3K4/27/9me3 in Stem Cells.
    Sun H; Wang Y; Wang Y; Ji F; Wang A; Yang M; He X; Li L
    Stem Cell Rev Rep; 2022 Jan; 18(1):165-178. PubMed ID: 34417934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin remodeling and bivalent histone modifications in embryonic stem cells.
    Harikumar A; Meshorer E
    EMBO Rep; 2015 Dec; 16(12):1609-19. PubMed ID: 26553936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci.
    Zhu Q; Ramakrishnan M; Park J; Belden WJ
    BMC Genomics; 2019 May; 20(1):350. PubMed ID: 31068130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bivalent histone modifications in early embryogenesis.
    Vastenhouw NL; Schier AF
    Curr Opin Cell Biol; 2012 Jun; 24(3):374-86. PubMed ID: 22513113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic signatures and temporal expression of lineage-specific genes in hESCs during differentiation to hepatocytes in vitro.
    Kim H; Jang MJ; Kang MJ; Han YM
    Hum Mol Genet; 2011 Feb; 20(3):401-12. PubMed ID: 21059703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H3K4/H3K9me3 Bivalent Chromatin Domains Targeted by Lineage-Specific DNA Methylation Pauses Adipocyte Differentiation.
    Matsumura Y; Nakaki R; Inagaki T; Yoshida A; Kano Y; Kimura H; Tanaka T; Tsutsumi S; Nakao M; Doi T; Fukami K; Osborne TF; Kodama T; Aburatani H; Sakai J
    Mol Cell; 2015 Nov; 60(4):584-96. PubMed ID: 26590716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bivalent Histone Modifications and Development.
    Li F; Wan M; Zhang B; Peng Y; Zhou Y; Pi C; Xu X; Ye L; Zhou X; Zheng L
    Curr Stem Cell Res Ther; 2018; 13(2):83-90. PubMed ID: 28117006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant.
    Denissov S; Hofemeister H; Marks H; Kranz A; Ciotta G; Singh S; Anastassiadis K; Stunnenberg HG; Stewart AF
    Development; 2014 Feb; 141(3):526-37. PubMed ID: 24423662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences among brain tumor stem cell types and fetal neural stem cells in focal regions of histone modifications and DNA methylation, broad regions of modifications, and bivalent promoters.
    Yoo S; Bieda MC
    BMC Genomics; 2014 Aug; 15(1):724. PubMed ID: 25163646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.
    Pan G; Tian S; Nie J; Yang C; Ruotti V; Wei H; Jonsdottir GA; Stewart R; Thomson JA
    Cell Stem Cell; 2007 Sep; 1(3):299-312. PubMed ID: 18371364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.
    Liu X; Wang C; Liu W; Li J; Li C; Kou X; Chen J; Zhao Y; Gao H; Wang H; Zhang Y; Gao Y; Gao S
    Nature; 2016 Sep; 537(7621):558-562. PubMed ID: 27626379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. METTL14 regulates chromatin bivalent domains in mouse embryonic stem cells.
    Mu M; Li X; Dong L; Wang J; Cai Q; Hu Y; Wang D; Zhao P; Zhang L; Zhang D; Cheng S; Tan L; Wu F; Shi YG; Xu W; Shi Y; Shen H
    Cell Rep; 2023 Jun; 42(6):112650. PubMed ID: 37314930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation.
    Sze CC; Cao K; Collings CK; Marshall SA; Rendleman EJ; Ozark PA; Chen FX; Morgan MA; Wang L; Shilatifard A
    Genes Dev; 2017 Sep; 31(17):1732-1737. PubMed ID: 28939616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation.
    Grandy RA; Whitfield TW; Wu H; Fitzgerald MP; VanOudenhove JJ; Zaidi SK; Montecino MA; Lian JB; van Wijnen AJ; Stein JL; Stein GS
    Mol Cell Biol; 2016 Feb; 36(4):615-27. PubMed ID: 26644406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bivalent histone modifications during tooth development.
    Zheng LW; Zhang BP; Xu RS; Xu X; Ye L; Zhou XD
    Int J Oral Sci; 2014 Dec; 6(4):205-11. PubMed ID: 25394593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes and Associations of Genomic Transcription and Histone Methylation with Salt Stress in Castor Bean.
    Han B; Xu W; Ahmed N; Yu A; Wang Z; Liu A
    Plant Cell Physiol; 2020 Jun; 61(6):1120-1133. PubMed ID: 32186723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Histone H3 Lysine 4 and 36 Tri-methylation in
    Mehraj H; Takahashi S; Miyaji N; Akter A; Suzuki Y; Seki M; Dennis ES; Fujimoto R
    Front Plant Sci; 2021; 12():659634. PubMed ID: 34163501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.
    Ko CI; Wang Q; Fan Y; Xia Y; Puga A
    Stem Cell Res; 2014 Jan; 12(1):296-308. PubMed ID: 24316986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation.
    Guillemette B; Drogaris P; Lin HH; Armstrong H; Hiragami-Hamada K; Imhof A; Bonneil E; Thibault P; Verreault A; Festenstein RJ
    PLoS Genet; 2011 Mar; 7(3):e1001354. PubMed ID: 21483810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic and distinct histone modifications facilitate human trophoblast lineage differentiation.
    Lee BK; Salamah J; Cheeran E; Adu-Gyamfi EA
    Sci Rep; 2024 Feb; 14(1):4505. PubMed ID: 38402275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.