These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 3441814)
1. Internal displacement distribution from in vitro loading of human thoracic and lumbar spinal motion segments: experimental results and theoretical predictions. Krag MH; Seroussi RE; Wilder DG; Pope MH Spine (Phila Pa 1976); 1987 Dec; 12(10):1001-7. PubMed ID: 3441814 [TBL] [Abstract][Full Text] [Related]
2. Recent advances in analytical modeling of lumbar disc degeneration. Natarajan RN; Williams JR; Andersson GB Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study. Masni-Azian ; Tanaka M Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454 [TBL] [Abstract][Full Text] [Related]
4. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Dooris AP; Goel VK; Grosland NM; Gilbertson LG; Wilder DG Spine (Phila Pa 1976); 2001 Mar; 26(6):E122-9. PubMed ID: 11246394 [TBL] [Abstract][Full Text] [Related]
5. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. Goto K; Tajima N; Chosa E; Totoribe K; Kuroki H; Arizumi Y; Arai T J Orthop Sci; 2002; 7(2):243-6. PubMed ID: 11956986 [TBL] [Abstract][Full Text] [Related]
6. Internal intervertebral disc mechanics as revealed by stress profilometry. McNally DS; Adams MA Spine (Phila Pa 1976); 1992 Jan; 17(1):66-73. PubMed ID: 1536017 [TBL] [Abstract][Full Text] [Related]
7. Mechanical initiation of intervertebral disc degeneration. Adams MA; Freeman BJ; Morrison HP; Nelson IW; Dolan P Spine (Phila Pa 1976); 2000 Jul; 25(13):1625-36. PubMed ID: 10870137 [TBL] [Abstract][Full Text] [Related]
8. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging. Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815 [TBL] [Abstract][Full Text] [Related]
9. Effects of charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Goel VK; Grauer JN; Patel TCh; Biyani A; Sairyo K; Vishnubhotla S; Matyas A; Cowgill I; Shaw M; Long R; Dick D; Panjabi MM; Serhan H Spine (Phila Pa 1976); 2005 Dec; 30(24):2755-64. PubMed ID: 16371899 [TBL] [Abstract][Full Text] [Related]
10. The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments. Konz RJ; Goel VK; Grobler LJ; Grosland NM; Spratt KF; Scifert JL; Sairyo K Spine (Phila Pa 1976); 2001 Feb; 26(4):E38-49. PubMed ID: 11224899 [TBL] [Abstract][Full Text] [Related]
11. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine]. Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033 [TBL] [Abstract][Full Text] [Related]
12. Numerical analysis of the influence of nucleus pulposus removal on the biomechanical behavior of a lumbar motion segment. Huang J; Yan H; Jian F; Wang X; Li H Comput Methods Biomech Biomed Engin; 2015; 18(14):1516-24. PubMed ID: 24893132 [TBL] [Abstract][Full Text] [Related]
13. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Wade KR; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692 [TBL] [Abstract][Full Text] [Related]
14. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study. Hsieh AH; Wagner DR; Cheng LY; Lotz JC J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658 [TBL] [Abstract][Full Text] [Related]
15. Creep bulging deformation of intervertebral disc under axial compression. Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898 [TBL] [Abstract][Full Text] [Related]
16. Moderately degenerated lumbar motion segments: Are they truly unstable? van Rijsbergen MM; Barthelemy VM; Vrancken AC; Crijns SP; Wilke HJ; Wilson W; van Rietbergen B; Ito K Biomech Model Mechanobiol; 2017 Apr; 16(2):537-547. PubMed ID: 27664020 [TBL] [Abstract][Full Text] [Related]
17. Posterior element loads in lumbar motion segments. Miller JA; Haderspeck KA; Schultz AB Spine (Phila Pa 1976); 1983 Apr; 8(3):331-7. PubMed ID: 6623201 [TBL] [Abstract][Full Text] [Related]
18. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676 [TBL] [Abstract][Full Text] [Related]
19. Development of a finite element lumbar spine model to predict intervertebral disc herniation risk factors. Rossman S; Meyer E; Rundell S Comput Methods Biomech Biomed Engin; 2022 Jan; 25(1):1-13. PubMed ID: 34854777 [TBL] [Abstract][Full Text] [Related]
20. Subject-specific multi-validation of a finite element model of ovine cervical functional spinal units. Mengoni M; Vasiljeva K; Jones AC; Tarsuslugil SM; Wilcox RK J Biomech; 2016 Jan; 49(2):259-66. PubMed ID: 26708919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]