These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34418212)

  • 21. A Rheological Study of the Association and Dynamics of MUC5AC Gels.
    Wagner CE; Turner BS; Rubinstein M; McKinley GH; Ribbeck K
    Biomacromolecules; 2017 Nov; 18(11):3654-3664. PubMed ID: 28903557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photopolymerized thermosensitive poly(HPMAlactate)-PEG-based hydrogels: effect of network design on mechanical properties, degradation, and release behavior.
    Censi R; Vermonden T; Deschout H; Braeckmans K; di Martino P; De Smedt SC; van Nostrum CF; Hennink WE
    Biomacromolecules; 2010 Aug; 11(8):2143-51. PubMed ID: 20614933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of highly elastomeric and property-tailorable poly(glycerol sebacate)-co-poly(ethylene glycol) hydrogels through thiol-norbornene photochemistry.
    Tsai YT; Chang CW; Yeh YC
    Biomater Sci; 2020 Sep; 8(17):4728-4738. PubMed ID: 32705102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Gel-forming mucins structure governs mucus gels viscoelasticity].
    Demouveaux B; Gouyer V; Magnien M; Plet S; Gottrand F; Narita T; Desseyn JL
    Med Sci (Paris); 2018 Oct; 34(10):806-812. PubMed ID: 30451674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of an engineered mucus microenvironment for in vitro modeling of host-microbe interactions.
    Huang AJ; O'Brien CL; Dawe N; Tahir A; Scott AJ; Leung BM
    Sci Rep; 2022 Apr; 12(1):5515. PubMed ID: 35365684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheological studies of thermosensitive triblock copolymer hydrogels.
    Vermonden T; M NA; van MJ; Hennink WE
    Langmuir; 2006 Nov; 22(24):10180-4. PubMed ID: 17107019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyaluronic Acid Molecular Weight-Dependent Modulation of Mucin Nanostructure for Potential Mucosal Therapeutic Applications.
    Hansen IM; Ebbesen MF; Kaspersen L; Thomsen T; Bienk K; Cai Y; Malle BM; Howard KA
    Mol Pharm; 2017 Jul; 14(7):2359-2367. PubMed ID: 28499338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of glycan nature on structure and viscoelastic properties of glycopeptide hydrogels.
    Proksch J; Dal Colle MCS; Heinz F; Schmidt RF; Gottwald J; Delbianco M; Keller BG; Gradzielski M; Alexiev U; Koksch B
    J Pept Sci; 2024 Aug; 30(8):e3599. PubMed ID: 38567550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The yielding behaviour of human mucus.
    Kavishvar D; Ramachandran A
    Adv Colloid Interface Sci; 2023 Dec; 322():103049. PubMed ID: 38039907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles.
    Ruiz-Pulido G; Medina DI
    Eur J Pharm Biopharm; 2021 Feb; 159():123-136. PubMed ID: 33387633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition.
    Hiemstra C; Aa LJ; Zhong Z; Dijkstra PJ; Feijen J
    Biomacromolecules; 2007 May; 8(5):1548-56. PubMed ID: 17425366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rheological and mucoadhesive characterization of poly(vinylpyrrolidone) hydrogels designed for nasal mucosal drug delivery.
    Alsarra IA; Hamed AY; Alanazi FK; Neau SH
    Arch Pharm Res; 2011 Apr; 34(4):573-82. PubMed ID: 21544722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of mucus on drug transport and its potential to affect therapeutic outcomes.
    Murgia X; Loretz B; Hartwig O; Hittinger M; Lehr CM
    Adv Drug Deliv Rev; 2018 Jan; 124():82-97. PubMed ID: 29106910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of the transport of HIV in vitro using a pH-responsive synthetic mucin-like polymer system.
    Mahalingam A; Jay JI; Langheinrich K; Shukair S; McRaven MD; Rohan LC; Herold BC; Hope TJ; Kiser PF
    Biomaterials; 2011 Nov; 32(33):8343-55. PubMed ID: 21875751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of Physicochemical Properties of Native Mucus and Reconstituted Mucin Gels.
    Wagner CE; Krupkin M; Smith-Dupont KB; Wu CM; Bustos NA; Witten J; Ribbeck K
    Biomacromolecules; 2023 Feb; 24(2):628-639. PubMed ID: 36727870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems.
    Serra L; Doménech J; Peppas NA
    Eur J Pharm Biopharm; 2006 May; 63(1):11-8. PubMed ID: 16368228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mucosa-Mimetic Materials for the Study of Intestinal Homeostasis and Disease.
    Donahue R; Sahoo JK; Rudolph S; Chen Y; Kaplan DL
    Adv Healthc Mater; 2023 Oct; 12(25):e2300301. PubMed ID: 37329337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.
    Gong C; Shan M; Li B; Wu G
    J Biomed Mater Res A; 2017 Sep; 105(9):2451-2460. PubMed ID: 28481038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mucins: the frontline defence of the lung.
    Ridley C; Thornton DJ
    Biochem Soc Trans; 2018 Oct; 46(5):1099-1106. PubMed ID: 30154090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linear poly(methyl glycerol) and linear polyglycerol as potent protein and cell resistant alternatives to poly(ethylene glycol).
    Weinhart M; Grunwald I; Wyszogrodzka M; Gaetjen L; Hartwig A; Haag R
    Chem Asian J; 2010 Sep; 5(9):1992-2000. PubMed ID: 20602410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.