These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34418445)

  • 1. Synthetic nanosensors for imaging neuromodulators.
    Del Bonis-O'Donnell JT; Mun J; Delevich K; Landry MP
    J Neurosci Methods; 2021 Nov; 363():109326. PubMed ID: 34418445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic Simulation of Dopamine Neuromodulation for Implementation of Fluorescent Neurochemical Probes in the Striatal Extracellular Space.
    Beyene AG; McFarlane IR; Pinals RL; Landry MP
    ACS Chem Neurosci; 2017 Oct; 8(10):2275-2289. PubMed ID: 28714693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor.
    Beyene AG; Delevich K; Del Bonis-O'Donnell JT; Piekarski DJ; Lin WC; Thomas AW; Yang SJ; Kosillo P; Yang D; Prounis GS; Wilbrecht L; Landry MP
    Sci Adv; 2019 Jul; 5(7):eaaw3108. PubMed ID: 31309147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared nanosensors enable optical imaging of oxytocin with selectivity over vasopressin in acute mouse brain slices.
    Mun J; Navarro N; Jeong S; Ouassil N; Leem E; Beyene AG; Landry MP
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2314795121. PubMed ID: 38905241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near infrared fluorescent nanosensors for high spatiotemporal oxytocin imaging.
    Adams JAM; Komatsu N; Navarro N; Leem E; Sun X; Zhao J; Arias-Soto OI; Landry MP
    bioRxiv; 2024 May; ():. PubMed ID: 38766215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput evolution of near-infrared serotonin nanosensors.
    Jeong S; Yang D; Beyene AG; Del Bonis-O'Donnell JT; Gest AMM; Navarro N; Sun X; Landry MP
    Sci Adv; 2019 Dec; 5(12):eaay3771. PubMed ID: 31897432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing synaptic dopamine efflux with a 2D composite nanofilm.
    Bulumulla C; Krasley AT; Cristofori-Armstrong B; Valinsky WC; Walpita D; Ackerman D; Clapham DE; Beyene AG
    Elife; 2022 Jul; 11():. PubMed ID: 35786443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators.
    Sabatini BL; Tian L
    Neuron; 2020 Oct; 108(1):17-32. PubMed ID: 33058762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Probes for Neurobiological Sensing and Imaging.
    Kim EH; Chin G; Rong G; Poskanzer KE; Clark HA
    Acc Chem Res; 2018 May; 51(5):1023-1032. PubMed ID: 29652127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromodulator-dependent synaptic tagging and capture retroactively controls neural coding in spiking neural networks.
    Lehr AB; Luboeinski J; Tetzlaff C
    Sci Rep; 2022 Oct; 12(1):17772. PubMed ID: 36273097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Neural Signatures of Dopamine Signaling with Machine Learning.
    Sorooshyari SK; Ouassil N; Yang SJ; Landry MP
    ACS Chem Neurosci; 2023 Jun; 14(12):2282-2293. PubMed ID: 37267623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared catecholamine nanosensors for high spatiotemporal dopamine imaging.
    Yang SJ; Del Bonis-O'Donnell JT; Beyene AG; Landry MP
    Nat Protoc; 2021 Jun; 16(6):3026-3048. PubMed ID: 34021297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of Carbon Nanotube Neurosensor Induced Transcriptomic and Morphological Changes in Mouse Microglia with Surface Passivation.
    Yang D; Yang SJ; Del Bonis-O'Donnell JT; Pinals RL; Landry MP
    ACS Nano; 2020 Oct; 14(10):13794-13805. PubMed ID: 32955853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric Imaging of Catecholamine Neurotransmitters with Nanosensors.
    Ma C; Mohr JM; Lauer G; Metternich JT; Neutsch K; Ziebarth T; Reiner A; Kruss S
    Nano Lett; 2024 Feb; 24(7):2400-2407. PubMed ID: 38345220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Sensitivity Near-Infrared Imaging of Fluorescent Nanosensors.
    Ackermann J; Stegemann J; Smola T; Reger E; Jung S; Schmitz A; Herbertz S; Erpenbeck L; Seidl K; Kruss S
    Small; 2023 Apr; 19(14):e2206856. PubMed ID: 36610045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescent nanosensor paint detects dopamine release at axonal varicosities with high spatiotemporal resolution.
    Elizarova S; Chouaib AA; Shaib A; Hill B; Mann F; Brose N; Kruss S; Daniel JA
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2202842119. PubMed ID: 35613050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting chemical neurotransmission in vivo: techniques, time scales, and theories.
    Sarter M; Kim Y
    ACS Chem Neurosci; 2015 Jan; 6(1):8-10. PubMed ID: 25514622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of Monoamine Neurotransmitters with Fluorescent Nanoscale Sensors.
    Dinarvand M; Elizarova S; Daniel J; Kruss S
    Chempluschem; 2020 Jul; 85(7):1465-1480. PubMed ID: 32644301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal scales of dopamine transmission.
    Liu C; Goel P; Kaeser PS
    Nat Rev Neurosci; 2021 Jun; 22(6):345-358. PubMed ID: 33837376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging chemical neurotransmission with genetically encoded fluorescent sensors.
    Liang R; Broussard GJ; Tian L
    ACS Chem Neurosci; 2015 Jan; 6(1):84-93. PubMed ID: 25565280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.