These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Musical expertise facilitates statistical learning of rhythm and the perceptive uncertainty: A cross-cultural study. Daikoku T; Yumoto M Neuropsychologia; 2020 Sep; 146():107553. PubMed ID: 32649945 [TBL] [Abstract][Full Text] [Related]
3. Pitch-class distribution modulates the statistical learning of atonal chord sequences. Daikoku T; Yatomi Y; Yumoto M Brain Cogn; 2016 Oct; 108():1-10. PubMed ID: 27429093 [TBL] [Abstract][Full Text] [Related]
4. Order of statistical learning depends on perceptive uncertainty. Daikoku T; Yumoto M Curr Res Neurobiol; 2023; 4():100080. PubMed ID: 36926596 [TBL] [Abstract][Full Text] [Related]
5. Statistical learning of an auditory sequence and reorganization of acquired knowledge: A time course of word segmentation and ordering. Daikoku T; Yatomi Y; Yumoto M Neuropsychologia; 2017 Jan; 95():1-10. PubMed ID: 27939187 [TBL] [Abstract][Full Text] [Related]
6. Statistical learning of music- and language-like sequences and tolerance for spectral shifts. Daikoku T; Yatomi Y; Yumoto M Neurobiol Learn Mem; 2015 Feb; 118():8-19. PubMed ID: 25451311 [TBL] [Abstract][Full Text] [Related]
7. Implicit and explicit statistical learning of tone sequences across spectral shifts. Daikoku T; Yatomi Y; Yumoto M Neuropsychologia; 2014 Oct; 63():194-204. PubMed ID: 25192632 [TBL] [Abstract][Full Text] [Related]
9. The effect of conditional probability of chord progression on brain response: an MEG study. Kim SG; Kim JS; Chung CK PLoS One; 2011 Feb; 6(2):e17337. PubMed ID: 21364895 [TBL] [Abstract][Full Text] [Related]
10. Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception. Ross B; Barat M; Fujioka T J Neurosci; 2017 Jun; 37(24):5948-5959. PubMed ID: 28539421 [TBL] [Abstract][Full Text] [Related]
12. Perceptual categorization of sound spectral envelopes reflected in auditory-evoked N1m. Mizuochi T; Yumoto M; Karino S; Itoh K; Yamakawa K; Kaga K Neuroreport; 2005 Apr; 16(6):555-8. PubMed ID: 15812306 [TBL] [Abstract][Full Text] [Related]
13. Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians. Ono K; Altmann CF; Matsuhashi M; Mima T; Fukuyama H Hear Res; 2015 Jan; 319():25-31. PubMed ID: 25446245 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds. Miettinen I; Tiitinen H; Alku P; May PJ BMC Neurosci; 2010 Feb; 11():24. PubMed ID: 20175890 [TBL] [Abstract][Full Text] [Related]
15. Auditory temporal processing in healthy aging: a magnetoencephalographic study. Sörös P; Teismann IK; Manemann E; Lütkenhöner B BMC Neurosci; 2009 Apr; 10():34. PubMed ID: 19351410 [TBL] [Abstract][Full Text] [Related]
17. Neuromagnetic representation of musical register information in human auditory cortex. Andermann M; van Dinther R; Patterson RD; Rupp A Neuroimage; 2011 Aug; 57(4):1499-506. PubMed ID: 21640834 [TBL] [Abstract][Full Text] [Related]
18. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex. Tiitinen H; Salminen NH; Palomäki KJ; Mäkinen VT; Alku P; May PJ Neurosci Lett; 2006 Mar; 396(1):17-22. PubMed ID: 16343772 [TBL] [Abstract][Full Text] [Related]
19. Effects of musical experience on different components of MEG responses elicited by sequential piano-tones and chords. Kuriki S; Kanda S; Hirata Y J Neurosci; 2006 Apr; 26(15):4046-53. PubMed ID: 16611821 [TBL] [Abstract][Full Text] [Related]
20. Latency variation of auditory N1m responses to vocal and nonvocal sounds. Mizuochi T; Yumoto M; Karino S; Itoh K; Yamasoba T Neuroreport; 2007 Dec; 18(18):1945-9. PubMed ID: 18007192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]