These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 34418539)
21. Tailoring surface stiffness to modulate senescent macrophage immunomodulation: Implications for osteo-/angio-genesis in aged bone regeneration. Zhang Y; Dai J; Hang R; Yao X; Bai L; Wang H; Huang D; Hang R Biomater Adv; 2024 Dec; 165():214010. PubMed ID: 39222592 [TBL] [Abstract][Full Text] [Related]
22. Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Qiao W; Xie H; Fang J; Shen J; Li W; Shen D; Wu J; Wu S; Liu X; Zheng Y; Cheung KMC; Yeung KWK Biomaterials; 2021 Sep; 276():121038. PubMed ID: 34339925 [TBL] [Abstract][Full Text] [Related]
23. Modulation of Macrophage Polarization for Bone Tissue Engineering Applications. Jamalpoor Z; Asgari A; Lashkari MH; Mirshafiey A; Mohsenzadegan M Iran J Allergy Asthma Immunol; 2018 Oct; 17(5):398-408. PubMed ID: 30518182 [TBL] [Abstract][Full Text] [Related]
24. Role of molybdenum in material immunomodulation and periodontal wound healing: Targeting immunometabolism and mitochondrial function for macrophage modulation. He XT; Li X; Zhang M; Tian BM; Sun LJ; Bi CS; Deng DK; Zhou H; Qu HL; Wu C; Chen FM Biomaterials; 2022 Apr; 283():121439. PubMed ID: 35247634 [TBL] [Abstract][Full Text] [Related]
25. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Su N; Villicana C; Yang F Biomaterials; 2022 Jul; 286():121604. PubMed ID: 35667249 [TBL] [Abstract][Full Text] [Related]
26. Sol-gel derived B Zheng K; Bider F; Monavari M; Xu Z; Janko C; Alexiou C; Beltrán AM; Boccaccini AR Regen Biomater; 2024; 11():rbad105. PubMed ID: 38173772 [TBL] [Abstract][Full Text] [Related]
27. Biological Impact of Bioactive Glasses and Their Dissolution Products. Hoppe A; Boccaccini AR Front Oral Biol; 2015; 17():22-32. PubMed ID: 26201273 [TBL] [Abstract][Full Text] [Related]
29. Bioactive glass-based fibrous wound dressings. Homaeigohar S; Li M; Boccaccini AR Burns Trauma; 2022; 10():tkac038. PubMed ID: 36196303 [TBL] [Abstract][Full Text] [Related]
30. Can bioactive glasses be useful to accelerate the healing of epithelial tissues? Kargozar S; Hamzehlou S; Baino F Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():1009-1020. PubMed ID: 30678892 [TBL] [Abstract][Full Text] [Related]
31. Immunomodulation by mesenchymal stem cells during osteogenic differentiation: Clinical implications during bone regeneration. Mahajan A; Bhattacharyya S Mol Immunol; 2023 Dec; 164():143-152. PubMed ID: 38011783 [TBL] [Abstract][Full Text] [Related]
32. A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. Vafa E; Tayebi L; Abbasi M; Azizli MJ; Bazargan-Lari R; Talaiekhozani A; Zareshahrabadi Z; Vaez A; Amani AM; Kamyab H; Chelliapan S Environ Sci Pollut Res Int; 2023 Nov; 30(55):116960-116983. PubMed ID: 36456674 [TBL] [Abstract][Full Text] [Related]
33. Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. Kargozar S; Mozafari M; Ghodrat S; Fiume E; Baino F Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111741. PubMed ID: 33579436 [TBL] [Abstract][Full Text] [Related]
34. Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects. Liu J; Rawlinson SCF; Hill RG; Fortune F Dent Mater; 2016 Oct; 32(10):e221-e237. PubMed ID: 27461261 [TBL] [Abstract][Full Text] [Related]
35. Opportunities for Bioactive Glass in Gastrointestinal Conditions: A Review of Production Methodologies, Morphology, Composition, and Performance. Harrop ACF; Tupally KR; Pandey P; Parekh HS Mol Pharm; 2023 Dec; 20(12):5954-5980. PubMed ID: 37962352 [TBL] [Abstract][Full Text] [Related]
36. Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies. Kargozar S; Hooshmand S; Hosseini SA; Gorgani S; Kermani F; Baino F Molecules; 2022 Oct; 27(19):. PubMed ID: 36235178 [TBL] [Abstract][Full Text] [Related]
38. Microsphere-Gel Composite System with Mesenchymal Stem Cell Recruitment, Antibacterial, and Immunomodulatory Properties Promote Bone Regeneration via Sequential Release of LL37 and W9 Peptides. Ma S; Wang C; Dong Y; Jing W; Wei P; Peng C; Liu Z; Zhao B; Wang Y ACS Appl Mater Interfaces; 2022 Aug; 14(34):38525-38540. PubMed ID: 35973165 [TBL] [Abstract][Full Text] [Related]
39. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Patel KD; Kim TH; Mandakhbayar N; Singh RK; Jang JH; Lee JH; Kim HW Acta Biomater; 2020 May; 108():97-110. PubMed ID: 32165193 [TBL] [Abstract][Full Text] [Related]
40. Phosphatidylserine liposome multilayers mediate the M1-to-M2 macrophage polarization to enhance bone tissue regeneration. Toita R; Kang JH; Tsuchiya A Acta Biomater; 2022 Dec; 154():583-596. PubMed ID: 36273800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]