These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34418923)

  • 1. Theory of molecular emission power spectra. II. Angle, frequency, and distance dependence of electromagnetic environment factor of a molecular emitter in plasmonic environments.
    Lee MW; Chuang YT; Hsu LY
    J Chem Phys; 2021 Aug; 155(7):074101. PubMed ID: 34418923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism.
    Wang S; Lee MW; Chuang YT; Scholes GD; Hsu LY
    J Chem Phys; 2020 Nov; 153(18):184102. PubMed ID: 33187405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dynamics of a molecular emitter strongly coupled with surface plasmon polaritons: A macroscopic quantum electrodynamics approach.
    Wang S; Scholes GD; Hsu LY
    J Chem Phys; 2019 Jul; 151(1):014105. PubMed ID: 31272186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation.
    Neuman T; Esteban R; Casanova D; García-Vidal FJ; Aizpurua J
    Nano Lett; 2018 Apr; 18(4):2358-2364. PubMed ID: 29522686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit.
    Santhosh K; Bitton O; Chuntonov L; Haran G
    Nat Commun; 2016 Jun; 7():ncomms11823. PubMed ID: 27293116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons.
    Wang S; Scholes GD; Hsu LY
    J Phys Chem Lett; 2020 Aug; 11(15):5948-5955. PubMed ID: 32619095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields.
    Gettapola K; Hapuarachchi H; Stockman MI; Premaratne M
    J Phys Condens Matter; 2020 Mar; 32(12):125301. PubMed ID: 31770745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Single-Photon Emitters in 2D Materials with Plasmonic Waveguides at Room Temperature.
    Jeong KY; Lee SW; Choi JH; So JP; Park HG
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32854316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong anisotropic lifetime orientation distributions of a two-level quantum emitter around a plasmonic nanorod.
    Liu JM; Liu JF; Yu YC; Zeng LY; Wang XH
    Nanoscale Res Lett; 2014; 9(1):194. PubMed ID: 24808801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Polaritons Generated from Strong Coupling between CdSe Nanoplatelets and a Dielectric Optical Cavity.
    Qiu L; Mandal A; Morshed O; Meidenbauer MT; Girten W; Huo P; Vamivakas AN; Krauss TD
    J Phys Chem Lett; 2021 May; 12(20):5030-5038. PubMed ID: 34018749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comments on the optical lineshape function: application to transient hole-burned spectra of bacterial reaction centers.
    Reppert M; Kell A; Pruitt T; Jankowiak R
    J Chem Phys; 2015 Mar; 142(9):094111. PubMed ID: 25747065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy.
    Coenen T; Vesseur EJ; Polman A; Koenderink AF
    Nano Lett; 2011 Sep; 11(9):3779-84. PubMed ID: 21780758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic coupling of quantum emitters in WSe
    Iff O; Lundt N; Betzold S; Tripathi LN; Emmerling M; Tongay S; Lee YJ; Kwon SH; Höfling S; Schneider C
    Opt Express; 2018 Oct; 26(20):25944-25951. PubMed ID: 30469688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule strong coupling at room temperature in plasmonic nanocavities.
    Chikkaraddy R; de Nijs B; Benz F; Barrow SJ; Scherman OA; Rosta E; Demetriadou A; Fox P; Hess O; Baumberg JJ
    Nature; 2016 Jul; 535(7610):127-30. PubMed ID: 27296227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of temperature effect on far-infrared spectra of liquid H2O and D2O by analytical theory and molecular dynamic simulations.
    Zasetsky AY; Gaiduk VI
    J Phys Chem A; 2007 Jun; 111(25):5599-606. PubMed ID: 17552503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of universal inverse-third power law for the shielding-induced fractional decrease in apex field enhancement factor at large spacings: a response via accurate Laplace-type calculations.
    de Assis TA; Dall'Agnol FF
    J Phys Condens Matter; 2018 May; 30(19):195301. PubMed ID: 29664009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity.
    Gupta SN; Bitton O; Neuman T; Esteban R; Chuntonov L; Aizpurua J; Haran G
    Nat Commun; 2021 Feb; 12(1):1310. PubMed ID: 33637699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the quality factors of plasmonic silver cavities for strong coupling with quantum emitters.
    Bitton O; Gupta SN; Cao Y; Vaskevich A; Houben L; Yelin T; Haran G
    J Chem Phys; 2021 Jan; 154(1):014703. PubMed ID: 33412871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Few-Mode Field Quantization of Arbitrary Electromagnetic Spectral Densities.
    Medina I; García-Vidal FJ; Fernández-Domínguez AI; Feist J
    Phys Rev Lett; 2021 Mar; 126(9):093601. PubMed ID: 33750181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.