These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34418941)

  • 1. Application of the dynamic mean field theory to fluid transport in slit pores.
    Yuan T; Farmahini AH; Sarkisov L
    J Chem Phys; 2021 Aug; 155(7):074702. PubMed ID: 34418941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.
    Oulebsir F; Vermorel R; Galliero G
    Langmuir; 2018 Jan; 34(2):561-571. PubMed ID: 29244508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mean field theory of condensation and evaporation processes for fluids in porous materials: application to partial drying and drying.
    Edison JR; Monson PA
    Faraday Discuss; 2010; 146():167-84; discussion 195-215, 395-403. PubMed ID: 21043421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.
    Edison JR; Monson PA
    Langmuir; 2013 Nov; 29(45):13808-20. PubMed ID: 24102541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model.
    Monson PA
    Langmuir; 2008 Nov; 24(21):12295-302. PubMed ID: 18834164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the juxtaposition of carbonaceous slit pores on the overall transport behavior of adsorbed fluids.
    Jepps OG; Bhatia SK; Searles DJ
    Langmuir; 2005 Jan; 21(1):229-39. PubMed ID: 15620308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic Monte Carlo approach to study fluid transport in pore networks.
    Apostolopoulou M; Day R; Hull R; Stamatakis M; Striolo A
    J Chem Phys; 2017 Oct; 147(13):134703. PubMed ID: 28987117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium Steady States in Fluid Transport through Mesopores: Dynamic Mean Field Theory and Nonequilibrium Molecular Dynamics.
    Rathi A; Kikkinides ES; Ford DM; Monson PA
    Langmuir; 2019 Apr; 35(17):5702-5710. PubMed ID: 30920224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice model of adsorption in disordered porous materials: mean-field density functional theory and Monte Carlo simulations.
    Sarkisov L; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011202. PubMed ID: 11800685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.
    Edison JR; Monson PA
    J Chem Phys; 2013 Jun; 138(23):234709. PubMed ID: 23802978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-Energy-Averaged Potentials for Adsorption in Heterogeneous Slit Pores Using PC-SAFT Classical Density Functional Theory.
    Eller J; Gross J
    Langmuir; 2021 Mar; 37(12):3538-3549. PubMed ID: 33724040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA melting in slit pores: a reaction density functional theory.
    Liu Y; Shang Y; Liu H; Hu Y; Jiang J
    J Phys Chem B; 2011 Mar; 115(8):1848-55. PubMed ID: 21299229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A density functional theory with a mean-field weight function: applications to surface tension, adsorption, and phase transition of a Lennard-Jones fluid in a slit-like pore.
    Peng B; Yu YX
    J Phys Chem B; 2008 Dec; 112(48):15407-16. PubMed ID: 19006278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicomponent effective medium-correlated random walk theory for the diffusion of fluid mixtures through porous media.
    Bonilla MR; Bhatia SK
    Langmuir; 2012 Jan; 28(1):517-33. PubMed ID: 22124253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase behavior and local structure of a binary mixture in pores: mean-field lattice model calculations for analyzing neutron scattering data.
    Woywod D; Schemmel S; Rother G; Findenegg GH; Schoen M
    J Chem Phys; 2005 Mar; 122(12):124510. PubMed ID: 15836400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.
    Hlushak S
    Phys Chem Chem Phys; 2018 Jan; 20(2):872-888. PubMed ID: 29239426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and adsorption under liquid flow: the role of pore geometry.
    Vanson JM; Boutin A; Klotz M; Coudert FX
    Soft Matter; 2017 Jan; 13(4):875-885. PubMed ID: 28074205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How 2D Nanoflakes Improve Transport in Mixed Matrix Membranes: Insights from a Simple Lattice Model and Dynamic Mean Field Theory.
    Yuan T; Sarkisov L
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8184-8195. PubMed ID: 38308600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.