These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1288 related articles for article (PubMed ID: 34419054)
21. New Insights into Antibiofilm Effect of a Nanosized ZnO Coating against the Pathogenic Methicillin Resistant Staphylococcus aureus. Alves MM; Bouchami O; Tavares A; Córdoba L; Santos CF; Miragaia M; de Fátima Montemor M ACS Appl Mater Interfaces; 2017 Aug; 9(34):28157-28167. PubMed ID: 28782933 [TBL] [Abstract][Full Text] [Related]
22. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Streptomyces baarnensis and its active metabolite (Ka): a promising combination against multidrug-resistant ESKAPE pathogens and cytotoxicity. Kalaba MH; El-Sherbiny GM; Ewais EA; Darwesh OM; Moghannem SA BMC Microbiol; 2024 Jul; 24(1):254. PubMed ID: 38982372 [TBL] [Abstract][Full Text] [Related]
23. In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Saravolatz LD; Pawlak J; Johnson L; Bonilla H; Saravolatz LD; Fakih MG; Fugelli A; Olsen WM Antimicrob Agents Chemother; 2012 Aug; 56(8):4478-82. PubMed ID: 22585222 [TBL] [Abstract][Full Text] [Related]
24. The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. Hemmati F; Salehi R; Ghotaslou R; Kafil HS; Hasani A; Gholizadeh P; Rezaee MA Int J Biol Macromol; 2020 Nov; 163():2248-2258. PubMed ID: 32920055 [TBL] [Abstract][Full Text] [Related]
25. Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections. Hemmati J; Chiani M; Asghari B; Roshanaei G; Soleimani Asl S; Shafiei M; Arabestani MR BMC Biotechnol; 2024 Jul; 24(1):47. PubMed ID: 38978013 [TBL] [Abstract][Full Text] [Related]
26. Growing Resistance to Vancomycin among Methicillin Resistant Staphylococcus Aureus Isolates from Different Clinical Samples. Pahadi PC; Shrestha UT; Adhikari N; Shah PK; Amatya R JNMA J Nepal Med Assoc; 2014; 52(196):977-81. PubMed ID: 26982895 [TBL] [Abstract][Full Text] [Related]
27. Telavancin demonstrates activity against methicillin-resistant Staphylococcus aureus isolates with reduced susceptibility to vancomycin, daptomycin, and linezolid in broth microdilution MIC and one-compartment pharmacokinetic/pharmacodynamic models. Smith JR; Barber KE; Hallesy J; Raut A; Rybak MJ Antimicrob Agents Chemother; 2015 Sep; 59(9):5529-34. PubMed ID: 26124162 [TBL] [Abstract][Full Text] [Related]
28. In vitro activity of the new multivalent glycopeptide-cephalosporin antibiotic TD-1792 against vancomycin-nonsusceptible Staphylococcus isolates. Leuthner KD; Vidaillac C; Cheung CM; Rybak MJ Antimicrob Agents Chemother; 2010 Sep; 54(9):3799-803. PubMed ID: 20585126 [TBL] [Abstract][Full Text] [Related]
29. Reduced vancomycin susceptibility in an in vitro catheter-related biofilm model correlates with poor therapeutic outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Abdelhady W; Bayer AS; Seidl K; Nast CC; Kiedrowski MR; Horswill AR; Yeaman MR; Xiong YQ Antimicrob Agents Chemother; 2013 Mar; 57(3):1447-54. PubMed ID: 23295925 [TBL] [Abstract][Full Text] [Related]
30. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. Al-Momani H; Aolymat I; Ibrahim L; Albalawi H; Al Balawi D; Albiss BA; Almasri M; Alghweiri S BMC Microbiol; 2024 Aug; 24(1):290. PubMed ID: 39095741 [TBL] [Abstract][Full Text] [Related]
31. Antimicrobial, Biofilm Inhibitory and Anti-infective Activity of Metallic Nanoparticles Against Pathogens MRSA and Pseudomonas aeruginosa PA01. Aswathanarayan JB; Vittal RR Pharm Nanotechnol; 2017; 5(2):148-153. PubMed ID: 28440203 [TBL] [Abstract][Full Text] [Related]
32. Staphylococcus aureus at an Indian tertiary hospital: Antimicrobial susceptibility and minimum inhibitory concentration (MIC) creep of antimicrobial agents. Khurana S; Mathur P; Malhotra R J Glob Antimicrob Resist; 2019 Jun; 17():98-102. PubMed ID: 30389637 [TBL] [Abstract][Full Text] [Related]
33. Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and gram-negative bacteria. Memar MY; Yekani M; Farajnia S; Ghadiri Moghaddam F; Nabizadeh E; Sharifi S; Maleki Dizaj S Arch Microbiol; 2023 Mar; 205(4):109. PubMed ID: 36884153 [TBL] [Abstract][Full Text] [Related]
35. Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients. Feizi S; Cooksley CM; Nepal R; Psaltis AJ; Wormald PJ; Vreugde S Pathology; 2022 Jun; 54(4):453-459. PubMed ID: 34844745 [TBL] [Abstract][Full Text] [Related]
36. Relationship between Vancomycin MIC and Virulence Gene Expression in Clonal Complexes of Methicillin-Susceptible Staphylococcus aureus Strains Isolated from Left-Sided Endocarditis. Pericàs JM; Cervera C; Garcia-de-la-Mària C; Sharma-Kuinkel BK; Gonzales R; Moreno A; Almela M; Falces C; Quintana E; Fuster D; Marco F; Bayer AS; Fowler VG; Miró JM Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31907181 [TBL] [Abstract][Full Text] [Related]
37. Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus. Sharaf M; Sewid AH; Hamouda HI; Elharrif MG; El-Demerdash AS; Alharthi A; Hashim N; Hamad AA; Selim S; Alkhalifah DHM; Hozzein WN; Abdalla M; Saber T Microbiol Spectr; 2022 Aug; 10(4):e0025022. PubMed ID: 35852338 [TBL] [Abstract][Full Text] [Related]
38. Effects of sub-inhibitory concentrations of nafcillin, vancomycin, ciprofloxacin, and rifampin on biofilm formation of clinical methicillin-resistant Park K-H; Kim D; Jung M; Kim DY; Lee Y-M; Lee MS; Hong K-W; Bae I-G; Hong SI; Cho O-H Microbiol Spectr; 2024 Jun; 12(6):e0341223. PubMed ID: 38651875 [TBL] [Abstract][Full Text] [Related]
39. Novel small-molecule compound YH7 inhibits the biofilm formation of Xiao Y; Wan C; Wu X; Xu Y; Chen Y; Rao L; Wang B; Shen L; Han W; Zhao H; Shi J; Zhang J; Song Z; Yu F mSphere; 2024 Jan; 9(1):e0056423. PubMed ID: 38170984 [TBL] [Abstract][Full Text] [Related]
40. Correlation Between Biofilm Formation and Antibiotic Resistance in MRSA and MSSA Isolated from Clinical Samples in Iran: A Systematic Review and Meta-Analysis. Hosseini M; Shapouri Moghaddam A; Derakhshan S; Hashemipour SMA; Hadadi-Fishani M; Pirouzi A; Khaledi A Microb Drug Resist; 2020 Sep; 26(9):1071-1080. PubMed ID: 32159447 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]