These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 34419093)
1. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics. Kienbaum L; Correa Abondano M; Blas R; Schmid K Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093 [TBL] [Abstract][Full Text] [Related]
2. Detection and analysis of wheat spikes using Convolutional Neural Networks. Hasan MM; Chopin JP; Laga H; Miklavcic SJ Plant Methods; 2018; 14():100. PubMed ID: 30459822 [TBL] [Abstract][Full Text] [Related]
3. Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties. Du J; Lu X; Fan J; Qin Y; Yang X; Guo X Front Plant Sci; 2020; 11():563386. PubMed ID: 33123178 [TBL] [Abstract][Full Text] [Related]
4. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping. Zhou S; Chai X; Yang Z; Wang H; Yang C; Sun T Plant Methods; 2021 Apr; 17(1):48. PubMed ID: 33926480 [TBL] [Abstract][Full Text] [Related]
5. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging. Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S Plant Methods; 2020; 16():40. PubMed ID: 32206080 [TBL] [Abstract][Full Text] [Related]
6. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images. Miller ND; Haase NJ; Lee J; Kaeppler SM; de Leon N; Spalding EP Plant J; 2017 Jan; 89(1):169-178. PubMed ID: 27585732 [TBL] [Abstract][Full Text] [Related]
7. Instance Segmentation to Estimate Consumption of Corn Ears by Wild Animals for GMO Preference Tests. Adke S; Haro von Mogel K; Jiang Y; Li C Front Artif Intell; 2020; 3():593622. PubMed ID: 33733223 [TBL] [Abstract][Full Text] [Related]
8. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping. Nguyen C; Sagan V; Bhadra S; Moose S Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425 [TBL] [Abstract][Full Text] [Related]
9. Genebank Phenomics: A Strategic Approach to Enhance Value and Utilization of Crop Germplasm. Nguyen GN; Norton SL Plants (Basel); 2020 Jun; 9(7):. PubMed ID: 32610615 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms. Jin S; Su Y; Gao S; Wu F; Hu T; Liu J; Li W; Wang D; Chen S; Jiang Y; Pang S; Guo Q Front Plant Sci; 2018; 9():866. PubMed ID: 29988466 [TBL] [Abstract][Full Text] [Related]
11. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images. Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254 [TBL] [Abstract][Full Text] [Related]
12. High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning. Yang S; Zheng L; He P; Wu T; Sun S; Wang M Plant Methods; 2021 May; 17(1):50. PubMed ID: 33952294 [TBL] [Abstract][Full Text] [Related]
13. Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning. DeChant C; Wiesner-Hanks T; Chen S; Stewart EL; Yosinski J; Gore MA; Nelson RJ; Lipson H Phytopathology; 2017 Nov; 107(11):1426-1432. PubMed ID: 28653579 [TBL] [Abstract][Full Text] [Related]
14. Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning. Lin Z; Guo W Front Plant Sci; 2020; 11():534853. PubMed ID: 32983210 [TBL] [Abstract][Full Text] [Related]
15. Image Enhanced Mask R-CNN: A Deep Learning Pipeline with New Evaluation Measures for Wind Turbine Blade Defect Detection and Classification. Zhang J; Cosma G; Watkins J J Imaging; 2021 Mar; 7(3):. PubMed ID: 34460702 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot). Narisetti N; Henke M; Neumann K; Stolzenburg F; Altmann T; Gladilin E Front Plant Sci; 2022; 13():906410. PubMed ID: 35909752 [TBL] [Abstract][Full Text] [Related]
18. Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms. Rodene E; Fernando GD; Piyush V; Ge Y; Schnable JC; Ghosh S; Yang J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610383 [TBL] [Abstract][Full Text] [Related]
19. Maize tassels detection: a benchmark of the state of the art. Zou H; Lu H; Li Y; Liu L; Cao Z Plant Methods; 2020; 16():108. PubMed ID: 32782455 [TBL] [Abstract][Full Text] [Related]
20. Automatic segmentation of the carotid artery and internal jugular vein from 2D ultrasound images for 3D vascular reconstruction. Groves LA; VanBerlo B; Veinberg N; Alboog A; Peters TM; Chen ECS Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1835-1846. PubMed ID: 32839888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]