These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 34419550)
21. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
22. Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo. Yao B; Hu T; Cui X; Song W; Fu X; Huang S Biofabrication; 2019 Sep; 11(4):045020. PubMed ID: 31387086 [TBL] [Abstract][Full Text] [Related]
23. 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Rastin H; Ramezanpour M; Hassan K; Mazinani A; Tung TT; Vreugde S; Losic D Carbohydr Polym; 2021 Jul; 264():117989. PubMed ID: 33910727 [TBL] [Abstract][Full Text] [Related]
24. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
25. Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. T Somasekharan L; Kasoju N; Raju R; Bhatt A Bioengineering (Basel); 2020 Sep; 7(3):. PubMed ID: 32916945 [TBL] [Abstract][Full Text] [Related]
26. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
27. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting. Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631 [TBL] [Abstract][Full Text] [Related]
28. Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting. Cavallo A; Al Kayal T; Mero A; Mezzetta A; Guazzelli L; Soldani G; Losi P J Funct Biomater; 2023 Sep; 14(9):. PubMed ID: 37754873 [TBL] [Abstract][Full Text] [Related]
29. Development of a bioink using exopolysaccharide from Rhizobium sp. PRIM17. Nagaraj A; Rekha PD Int J Biol Macromol; 2023 Apr; 234():123608. PubMed ID: 36773865 [TBL] [Abstract][Full Text] [Related]
30. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Kallingal N; Ramakrishnan R; Krishnan V K J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058 [TBL] [Abstract][Full Text] [Related]
31. Nanofibrous polyelectrolyte complex incorporated BSA-alginate composite bioink for 3D bioprinting of bone mimicking constructs. Chrungoo S; Bharadwaj T; Verma D Int J Biol Macromol; 2024 May; 266(Pt 1):131123. PubMed ID: 38537853 [TBL] [Abstract][Full Text] [Related]
32. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
33. Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing. Hao L; Zhao S; Hao S; He Y; Feng M; Zhou K; He Y; Yang J; Mao H; Gu Z Int J Biol Macromol; 2023 Jun; 240():124364. PubMed ID: 37044319 [TBL] [Abstract][Full Text] [Related]
34. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability. Reakasame S; Dranseikiene D; Schrüfer S; Zheng K; Schubert DW; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112336. PubMed ID: 34474887 [TBL] [Abstract][Full Text] [Related]
35. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related]
36. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications. Müller M; Öztürk E; Arlov Ø; Gatenholm P; Zenobi-Wong M Ann Biomed Eng; 2017 Jan; 45(1):210-223. PubMed ID: 27503606 [TBL] [Abstract][Full Text] [Related]
37. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Tanadchangsaeng N; Pasanaphong K; Tawonsawatruk T; Rattanapinyopituk K; Tangketsarawan B; Rawiwet V; Kongchanagul A; Srikaew N; Yoyruerop T; Panupinthu N; Sangpayap R; Panaksri A; Boonyagul S; Hemstapat R Sci Rep; 2024 Oct; 14(1):23240. PubMed ID: 39369014 [TBL] [Abstract][Full Text] [Related]
38. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
39. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. Shams E; Barzad MS; Mohamadnia S; Tavakoli O; Mehrdadfar A J Biomater Appl; 2022 Aug; 37(2):355-372. PubMed ID: 35510845 [TBL] [Abstract][Full Text] [Related]
40. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]