These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 34419550)

  • 41. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing.
    Kim SH; Yeon YK; Lee JM; Chao JR; Lee YJ; Seo YB; Sultan MT; Lee OJ; Lee JS; Yoon SI; Hong IS; Khang G; Lee SJ; Yoo JJ; Park CH
    Nat Commun; 2018 Apr; 9(1):1620. PubMed ID: 29693652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of cross-linking on the dimensional stability and biocompatibility of a tailored 3D-bioprinted gelatin scaffold.
    Choi DJ; Kho Y; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Biol Macromol; 2019 Aug; 135():659-667. PubMed ID: 31150670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Composite bioink incorporating cell-laden liver decellularized extracellular matrix for bioprinting of scaffolds for bone tissue engineering.
    You P; Sun H; Chen H; Li C; Mao Y; Zhang T; Yang H; Dong H
    Biomater Adv; 2024 Dec; 165():214017. PubMed ID: 39236580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of highly-reproducible hydrogel based bioink for regeneration of skin-tissues via 3-D bioprinting technology.
    Ullah F; Javed F; Mushtaq I; Rahman LU; Ahmed N; Din IU; Alotaibi MA; Alharthi AI; Ahmad A; Bakht MA; Khan F; Tasleem S
    Int J Biol Macromol; 2023 Mar; 230():123131. PubMed ID: 36610570
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering.
    Im S; Choe G; Seok JM; Yeo SJ; Lee JH; Kim WD; Lee JY; Park SA
    Int J Biol Macromol; 2022 Apr; 205():520-529. PubMed ID: 35217077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness.
    Li J; Zhang Y; Enhe J; Yao B; Wang Y; Zhu D; Li Z; Song W; Duan X; Yuan X; Fu X; Huang S
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112193. PubMed ID: 34082990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation.
    Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.
    Luo Y; Lin X; Chen B; Wei X
    Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.
    Rutz AL; Hyland KE; Jakus AE; Burghardt WR; Shah RN
    Adv Mater; 2015 Mar; 27(9):1607-14. PubMed ID: 25641220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carboxymethyl cellulose-agarose-gelatin: A thermoresponsive triad bioink composition to fabricate volumetric soft tissue constructs.
    Sekar MP; Budharaju H; Sethuraman S; Sundaramurthi D
    SLAS Technol; 2023 Jun; 28(3):183-198. PubMed ID: 37149220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Properties of an alginate-gelatin-based bioink and its potential impact on cell migration, proliferation, and differentiation.
    Cheng L; Yao B; Hu T; Cui X; Shu X; Tang S; Wang R; Wang Y; Liu Y; Song W; Fu X; Li H; Huang S
    Int J Biol Macromol; 2019 Aug; 135():1107-1113. PubMed ID: 31173833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs.
    Amaral AJR; Gaspar VM; Lavrador P; Mano JF
    Biofabrication; 2021 May; 13(3):. PubMed ID: 34075894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink.
    Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH
    Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rheological characterization of cell-laden alginate-gelatin hydrogels for 3D biofabrication.
    Gregory T; Benhal P; Scutte A; Quashie D; Harrison K; Cargill C; Grandison S; Savitsky MJ; Ramakrishnan S; Ali J
    J Mech Behav Biomed Mater; 2022 Dec; 136():105474. PubMed ID: 36191458
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Silk Fibroin Enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for Light-Based Three-Dimensional Bioprinting.
    Kim E; Seok JM; Bae SB; Park SA; Park WH
    Biomacromolecules; 2021 May; 22(5):1921-1931. PubMed ID: 33840195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of two different alginate-based bioinks and the influence of melanoma growth within.
    Schipka R; Heltmann-Meyer S; Schneidereit D; Friedrich O; Röder J; Boccaccini AR; Schrüfer S; Schubert DW; Horch RE; Bosserhoff AK; Arkudas A; Kengelbach-Weigand A; Schmid R
    Sci Rep; 2024 Jun; 14(1):12945. PubMed ID: 38839791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.