These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34419652)

  • 1. Development and application of connected vehicle technology test platform based on driving simulator: Case study.
    Zhao X; Chen H; Li H; Li X; Chang X; Feng X; Chen Y
    Accid Anal Prev; 2021 Oct; 161():106330. PubMed ID: 34419652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of connected vehicle-based variable speed limit under different foggy conditions based on simulated driving.
    Zhao X; Xu W; Ma J; Li H; Chen Y; Rong J
    Accid Anal Prev; 2019 Jul; 128():206-216. PubMed ID: 31055185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the connected vehicle environment on tunnel entrance zone.
    Li Z; Xing G; Zhao X; Li H
    Accid Anal Prev; 2021 Jul; 157():106145. PubMed ID: 34020757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of cooperative systems on driver behavior in heavy fog condition based on a driving simulator.
    Chang X; Li H; Qin L; Rong J; Lu Y; Chen X
    Accid Anal Prev; 2019 Jul; 128():197-205. PubMed ID: 31054492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of the connected environment on driving behavior and safety: A driving simulator study.
    Ali Y; Sharma A; Haque MM; Zheng Z; Saifuzzaman M
    Accid Anal Prev; 2020 Sep; 144():105643. PubMed ID: 32593781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vehicle warnings for work zone and related rear-end collisions: A driving simulator experiment.
    Hang J; Yan X; Li X; Duan K
    Accid Anal Prev; 2022 Sep; 174():106768. PubMed ID: 35820314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connected vehicle real-time traveler information messages for freeway speed harmonization under adverse weather conditions: Trajectory level analysis using driving simulator.
    Yang G; Ahmed M; Gaweesh S; Adomah E
    Accid Anal Prev; 2020 Oct; 146():105707. PubMed ID: 32818760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guidance-oriented advanced curve speed warning system in a connected vehicle environment.
    Wang S; Wang Y; Zheng Q; Li Z
    Accid Anal Prev; 2020 Dec; 148():105801. PubMed ID: 33128990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of augmented reality cues to improve the safety of left-turn maneuvers in a connected environment: A driving simulator study.
    Calvi A; D'Amico F; Ferrante C; Bianchini Ciampoli L
    Accid Anal Prev; 2020 Dec; 148():105793. PubMed ID: 33017731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eye movement as a function to explore the effects of improved signs design and audio warning on drivers' behavior at STOP-sign-controlled grade crossings.
    Liu R; Yan X; Ma S; Xue Q
    Accid Anal Prev; 2022 Jul; 172():106693. PubMed ID: 35552119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of curbs on driver behaviors in four-lane rural highways--A driving simulator based study.
    Yang Q; Overton R; Han LD; Yan X; Richards SH
    Accid Anal Prev; 2013 Jan; 50():1289-97. PubMed ID: 23084096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stated acceptance and behavioral responses of drivers towards innovative connected vehicle applications.
    Li W; Wu G; Yao D; Zhang Y; Barth MJ; Boriboonsomsin K
    Accid Anal Prev; 2021 Jun; 155():106095. PubMed ID: 33798797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vehicle emission implications of drivers' smart advisory system for traffic operations in work zones.
    Li Q; Qiao F; Yu L
    J Air Waste Manag Assoc; 2016 May; 66(5):446-55. PubMed ID: 26756853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into passing behavior at passing zones to validate and extend the use of driving simulators in two-lane roads safety analysis.
    Karimi A; Bassani M; Boroujerdian AM; Catani L
    Accid Anal Prev; 2020 May; 139():105487. PubMed ID: 32135336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring drivers' mental workload and visual demand while using an in-vehicle HMI for eco-safe driving.
    Li X; Vaezipour A; Rakotonirainy A; Demmel S; Oviedo-Trespalacios O
    Accid Anal Prev; 2020 Oct; 146():105756. PubMed ID: 32919220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of proposed countermeasures for dilemma zone at signalized intersections based on cellular automata simulations.
    Wu Y; Abdel-Aty M; Ding Y; Jia B; Shi Q; Yan X
    Accid Anal Prev; 2018 Jul; 116():69-78. PubMed ID: 28911878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding take-over performance of high crash risk drivers during conditionally automated driving.
    Lin Q; Li S; Ma X; Lu G
    Accid Anal Prev; 2020 Aug; 143():105543. PubMed ID: 32485431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traffic calming along rural highways crossing small urban communities: driving simulator experiment.
    Galante F; Mauriello F; Montella A; Pernetti M; Aria M; D'Ambrosio A
    Accid Anal Prev; 2010 Nov; 42(6):1585-94. PubMed ID: 20728607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A driving simulator study of driver performance on deceleration lanes.
    Calvi A; Benedetto A; De Blasiis MR
    Accid Anal Prev; 2012 Mar; 45():195-203. PubMed ID: 22269501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.