BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34419880)

  • 1. Heterologous production of α-Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method.
    Li C; Swofford CA; Rückert C; Chatzivasileiou AO; Ou RW; Opdensteinen P; Luttermann T; Zhou K; Stephanopoulos G; Jones Prather KL; Zhong-Johnson EZL; Liang S; Zheng S; Lin Y; Sinskey AJ
    Bioresour Technol; 2021 Dec; 341():125782. PubMed ID: 34419880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
    Heider SA; Peters-Wendisch P; Netzer R; Stafnes M; Brautaset T; Wendisch VF
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1223-35. PubMed ID: 24270893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoid Production by Recombinant Corynebacterium glutamicum: Strain Construction, Cultivation, Extraction, and Quantification of Carotenoids and Terpenes.
    Henke NA; Frohwitter J; Peters-Wendisch P; Wendisch VF
    Methods Mol Biol; 2018; 1852():127-141. PubMed ID: 30109629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
    Zhang C; Zhang J; Kang Z; Du G; Chen J
    J Ind Microbiol Biotechnol; 2015 May; 42(5):787-97. PubMed ID: 25665502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Corynebacterium glutamicum for violacein hyper production.
    Sun H; Zhao D; Xiong B; Zhang C; Bi C
    Microb Cell Fact; 2016 Aug; 15(1):148. PubMed ID: 27557730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.
    Henke NA; Heider SA; Peters-Wendisch P; Wendisch VF
    Mar Drugs; 2016 Jun; 14(7):. PubMed ID: 27376307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of L-valine from metabolically engineered Corynebacterium glutamicum.
    Wang X; Zhang H; Quinn PJ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4319-4330. PubMed ID: 29594358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum.
    Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2101-2111. PubMed ID: 30663007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
    Matano C; Uhde A; Youn JW; Maeda T; Clermont L; Marin K; Krämer R; Wendisch VF; Seibold GM
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5633-43. PubMed ID: 24668244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering carbon source division of labor for efficient α-carotene production in Corynebacterium glutamicum.
    Li K; Li C; Liu CG; Zhao XQ; Ou R; Swofford CA; Bai FW; Stephanopoulos G; Sinskey AJ
    Metab Eng; 2024 Jun; 84():117-127. PubMed ID: 38901555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-isopropanol production in Corynebacterium glutamicum: Metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping.
    Ko YJ; Cha J; Jeong WY; Lee ME; Cho BH; Nisha B; Jeong HJ; Park SE; Han SO
    Bioresour Technol; 2022 Jun; 354():127171. PubMed ID: 35472638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing
    Han T; Kim GB; Lee SY
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remodeling metabolism of Corynebacterium glutamicum for high-level dencichine production.
    Huang D; Wang X; Liu WB; Ye BC
    Bioresour Technol; 2023 Nov; 388():129800. PubMed ID: 37748563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
    Peters-Wendisch P; Götker S; Heider SA; Komati Reddy G; Nguyen AQ; Stansen KC; Wendisch VF
    J Biotechnol; 2014 Dec; 192 Pt B():346-54. PubMed ID: 24486440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.
    Li Y; Cong H; Liu B; Song J; Sun X; Zhang J; Yang Q
    Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Zhang J; Qian F; Dong F; Wang Q; Yang J; Jiang Y; Yang S
    ACS Synth Biol; 2020 Jul; 9(7):1897-1906. PubMed ID: 32627539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems metabolic engineering of Corynebacterium glutamicum for the efficient production of β-alanine.
    Ghiffary MR; Prabowo CPS; Adidjaja JJ; Lee SY; Kim HU
    Metab Eng; 2022 Nov; 74():121-129. PubMed ID: 36341775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.