These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34419898)
1. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation. Dong J; Liang D; Yang X; Sun C Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898 [TBL] [Abstract][Full Text] [Related]
2. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199 [TBL] [Abstract][Full Text] [Related]
3. The effect of microchannel height on the acoustophoretic motion of sub-micron particles. Lai TW; Tennakoon T; Chan KC; Liu CH; Chao CYH; Fu SC Ultrasonics; 2024 Jan; 136():107126. PubMed ID: 37553269 [TBL] [Abstract][Full Text] [Related]
4. Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves. Alshehhi F; Waheed W; Al-Ali A; Abu-Nada E; Alazzam A Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838066 [TBL] [Abstract][Full Text] [Related]
6. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices. Hsu JC; Hsu CH; Huang YW Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118 [TBL] [Abstract][Full Text] [Related]
7. Numerical study of acoustophoretic manipulation of particles in microfluidic channels. Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594 [TBL] [Abstract][Full Text] [Related]
8. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation. Zhou Y Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071 [TBL] [Abstract][Full Text] [Related]
9. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Muller PB; Barnkob R; Jensen MJ; Bruus H Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952 [TBL] [Abstract][Full Text] [Related]
10. Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance. Mezzanzanica G; Français O; Mariani S Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763962 [TBL] [Abstract][Full Text] [Related]
11. Radiation dominated acoustophoresis driven by surface acoustic waves. Guo J; Kang Y; Ai Y J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191 [TBL] [Abstract][Full Text] [Related]
12. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW). Sriphutkiat Y; Zhou Y Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067852 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881 [TBL] [Abstract][Full Text] [Related]
14. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Huang H; Stratton Z; Huang Y; Huang TJ Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400 [TBL] [Abstract][Full Text] [Related]
15. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation. Soliman AM; Eldosoky MA; Taha TE Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506 [TBL] [Abstract][Full Text] [Related]
16. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner. Khan MS; Sahin MA; Destgeer G; Park J Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893 [TBL] [Abstract][Full Text] [Related]
17. Microparticle Acoustophoresis in Aluminum-Based Acoustofluidic Devices with PDMS Covers. Bodé WN; Jiang L; Laurell T; Bruus H Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32168805 [TBL] [Abstract][Full Text] [Related]
18. Microparticle Manipulation by Standing Surface Acoustic Waves with Dual-frequency Excitations. Zhou Y; Sriphutkiat Y J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199023 [TBL] [Abstract][Full Text] [Related]
19. Forces acting on a small particle in an acoustical field in a viscous fluid. Settnes M; Bruus H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016327. PubMed ID: 22400677 [TBL] [Abstract][Full Text] [Related]
20. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces. Lei J Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]