BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34419916)

  • 21. The effect of modified optic flow gain on quiet stance.
    Lavalle LK; Cleworth TW
    Neurosci Lett; 2023 Feb; 797():137068. PubMed ID: 36641046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cerebellar White Matter Damage Is Associated With Postural Sway Deficits in People With Multiple Sclerosis.
    Gera G; Fling BW; Horak FB
    Arch Phys Med Rehabil; 2020 Feb; 101(2):258-264. PubMed ID: 31465761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lower limb joint-specific contributions to standing postural sway in persons with unilateral lower limb loss.
    Butowicz CM; Yoder AJ; Farrokhi S; Mazzone B; Hendershot BD
    Gait Posture; 2021 Sep; 89():109-114. PubMed ID: 34271526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contributions to lateral balance control in ambulatory older adults.
    Sparto PJ; Newman AB; Simonsick EM; Caserotti P; Strotmeyer ES; Kritchevsky SB; Yaffe K; Rosano C;
    Aging Clin Exp Res; 2018 Jun; 30(6):633-641. PubMed ID: 28836178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk.
    High CM; McHugh HF; Mills SC; Amano S; Freund JE; Vallabhajosula S
    Gait Posture; 2018 Jun; 63():202-207. PubMed ID: 29772496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of external and internal focus of attention on visual dependence and EEG alpha oscillations during postural control.
    Ma L; Marshall PJ; Wright WG
    J Neuroeng Rehabil; 2022 Jul; 19(1):81. PubMed ID: 35883085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Egomotion and vection in young and elderly adults.
    Haibach P; Slobounov S; Newell K
    Gerontology; 2009; 55(6):637-43. PubMed ID: 19707011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of radial optic flow stimulation on static postural balance in Parkinson's disease: A preliminary study.
    Piras A; Trofè A; Meoni A; Raffi M
    Hum Mov Sci; 2022 Feb; 81():102905. PubMed ID: 34826663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of increasing difficulty in standing balance tasks with visual feedback on postural sway and EMG: complexity and performance.
    Barbado Murillo D; Sabido Solana R; Vera-Garcia FJ; Gusi Fuertes N; Moreno FJ
    Hum Mov Sci; 2012 Oct; 31(5):1224-37. PubMed ID: 22658508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between Spectral Characteristics of Spontaneous Postural Sway and Motion Sickness Susceptibility.
    Laboissière R; Letievant JC; Ionescu E; Barraud PA; Mazzuca M; Cian C
    PLoS One; 2015; 10(12):e0144466. PubMed ID: 26657203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Six minutes of walking leads to reduced lower limb strength and increased postural sway in people with Multiple Sclerosis.
    McLoughlin JV; Barr CJ; Crotty M; Sturnieks DL; Lord SR
    NeuroRehabilitation; 2014; 35(3):503-8. PubMed ID: 25248444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rest Intervals during Virtual Reality Gaming Augments Standing Postural Sway Disturbance.
    Clark RA; Szpak A; Michalski SC; Loetscher T
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The direction of postural threat alters balance control when standing at virtual elevation.
    Raffegeau TE; Fawver B; Young WR; Williams AM; Lohse KR; Fino PC
    Exp Brain Res; 2020 Nov; 238(11):2653-2663. PubMed ID: 32944785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fall Risk Prediction in Multiple Sclerosis Using Postural Sway Measures: A Machine Learning Approach.
    Sun R; Hsieh KL; Sosnoff JJ
    Sci Rep; 2019 Nov; 9(1):16154. PubMed ID: 31695127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Standing data disproves biomechanical mechanism for balance-based torso-weighting.
    Crittendon A; O'Neill D; Widener GL; Allen DD
    Arch Phys Med Rehabil; 2014 Jan; 95(1):43-9. PubMed ID: 24001445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual dependence affects postural sway responses to continuous visual field motion in individuals with cerebral palsy.
    Yu Y; Lauer RT; Tucker CA; Thompson ED; Keshner EA
    Dev Neurorehabil; 2018 Nov; 21(8):531-541. PubMed ID: 29341797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual Feedback and Postural Control in Multiple Sclerosis.
    Inojosa H; Schriefer D; Trentzsch K; Klöditz A; Ziemssen T
    J Clin Med; 2020 Apr; 9(5):. PubMed ID: 32365769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of visual feedback on dynamic balance control in chronic stroke survivors.
    Walker ER; Hyngstrom AS; Schmit BD
    J Biomech; 2016 Mar; 49(5):698-703. PubMed ID: 26916509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control Mechanisms of Static and Dynamic Balance in Adults With and Without Vestibular Dysfunction in Oculus Virtual Environments.
    Lubetzky AV; Hujsak BD; Kelly JL; Fu G; Perlin K
    PM R; 2018 Nov; 10(11):1223-1236.e2. PubMed ID: 30503230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale entropy identifies differences in complexity in postural control in women with multiple sclerosis.
    Busa MA; Jones SL; Hamill J; van Emmerik RE
    Gait Posture; 2016 Mar; 45():7-11. PubMed ID: 26979875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.