These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 34420034)

  • 21. Toward Understanding Microbial Ecology to Restore a Degraded Ecosystem.
    Song L
    Int J Environ Res Public Health; 2023 Mar; 20(5):. PubMed ID: 36901656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbiome Modulation-Toward a Better Understanding of Plant Microbiome Response to Microbial Inoculants.
    Berg G; Kusstatscher P; Abdelfattah A; Cernava T; Smalla K
    Front Microbiol; 2021; 12():650610. PubMed ID: 33897663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linking Spatial Structure and Community-Level Biotic Interactions through Cooccurrence and Time Series Modeling of the Human Intestinal Microbiota.
    de Muinck EJ; Lundin KEA; Trosvik P
    mSystems; 2017; 2(5):. PubMed ID: 28904999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Abundance-occupancy distributions to prioritize plant core microbiome membership.
    Shade A; Stopnisek N
    Curr Opin Microbiol; 2019 Jun; 49():50-58. PubMed ID: 31715441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbiome engineering for sustainable agriculture: using synthetic biology to enhance nitrogen metabolism in plant-associated microbes.
    Han SW; Yoshikuni Y
    Curr Opin Microbiol; 2022 Aug; 68():102172. PubMed ID: 35717707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrating nanotechnology with plant microbiome for next-generation crop health.
    Hussain M; Zahra N; Lang T; Zain M; Raza M; Shakoor N; Adeel M; Zhou H
    Plant Physiol Biochem; 2023 Mar; 196():703-711. PubMed ID: 36809731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Synthetic Microbial Community of Plant Core Microbiome Can Be a Potential Biocontrol Tool.
    Wang Z; Hu X; Solanki MK; Pang F
    J Agric Food Chem; 2023 Apr; 71(13):5030-5041. PubMed ID: 36946724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combating biotic stresses in plants by synthetic microbial communities: Principles, applications and challenges.
    Pradhan S; Tyagi R; Sharma S
    J Appl Microbiol; 2022 Nov; 133(5):2742-2759. PubMed ID: 36039728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbes to support plant health: understanding bioinoculant success in complex conditions.
    Poppeliers SW; Sánchez-Gil JJ; de Jonge R
    Curr Opin Microbiol; 2023 Jun; 73():102286. PubMed ID: 36878082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Restoring degraded microbiome function with self-assembled communities.
    Landazuri CFG; Gomez JS; Raaijmakers JM; Oyserman BO
    FEMS Microbiol Ecol; 2020 Nov; 96(12):. PubMed ID: 33150935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering.
    Afridi MS; Fakhar A; Kumar A; Ali S; Medeiros FHV; Muneer MA; Ali H; Saleem M
    Microbiol Res; 2022 Dec; 265():127199. PubMed ID: 36137486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities.
    Ahmed A; He P; He P; Wu Y; He Y; Munir S
    Environ Int; 2023 Mar; 173():107819. PubMed ID: 36842382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial community composition interacts with local abiotic conditions to drive colonization resistance in human gut microbiome samples.
    Baumgartner M; Pfrunder-Cardozo KR; Hall AR
    Proc Biol Sci; 2021 Mar; 288(1947):20203106. PubMed ID: 33757361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecology and Evolution of Plant Microbiomes.
    Cordovez V; Dini-Andreote F; Carrión VJ; Raaijmakers JM
    Annu Rev Microbiol; 2019 Sep; 73():69-88. PubMed ID: 31091418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency.
    de Souza RSC; Armanhi JSL; Arruda P
    Front Plant Sci; 2020; 11():1179. PubMed ID: 32983187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant Microbiome Engineering: Hopes or Hypes.
    Afridi MS; Ali S; Salam A; César Terra W; Hafeez A; Sumaira ; Ali B; S AlTami M; Ameen F; Ercisli S; Marc RA; Medeiros FHV; Karunakaran R
    Biology (Basel); 2022 Dec; 11(12):. PubMed ID: 36552290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbiome for sustainable agriculture: a review with special reference to the corn production system.
    Jat SL; Suby SB; Parihar CM; Gambhir G; Kumar N; Rakshit S
    Arch Microbiol; 2021 Aug; 203(6):2771-2793. PubMed ID: 33884458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fifty important research questions in microbial ecology.
    Antwis RE; Griffiths SM; Harrison XA; Aranega-Bou P; Arce A; Bettridge AS; Brailsford FL; de Menezes A; Devaynes A; Forbes KM; Fry EL; Goodhead I; Haskell E; Heys C; James C; Johnston SR; Lewis GR; Lewis Z; Macey MC; McCarthy A; McDonald JE; Mejia-Florez NL; O'Brien D; Orland C; Pautasso M; Reid WDK; Robinson HA; Wilson K; Sutherland WJ
    FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28379446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering plant microbiomes by integrating eco-evolutionary principles into current strategies.
    Morales Moreira ZP; Chen MY; Yanez Ortuno DL; Haney CH
    Curr Opin Plant Biol; 2023 Feb; 71():102316. PubMed ID: 36442442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.