These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 34420171)
1. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production. Sadeghi S; Askari IB Environ Sci Pollut Res Int; 2022 Jan; 29(4):5469-5495. PubMed ID: 34420171 [TBL] [Abstract][Full Text] [Related]
2. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production. Falter C; Batteiger V; Sizmann A Environ Sci Technol; 2016 Jan; 50(1):470-7. PubMed ID: 26641878 [TBL] [Abstract][Full Text] [Related]
3. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant. Hosseini R; Babaelahi M; Rafat E Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763 [TBL] [Abstract][Full Text] [Related]
4. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP? Moore J; Apt J Environ Sci Technol; 2013 Mar; 47(6):2487-93. PubMed ID: 23379665 [TBL] [Abstract][Full Text] [Related]
5. Thermo-Economic Optimization of an Idealized Solar Tower Power Plant Combined with MED System. Zheng Y; Zhao Y; Liang S; Zheng H Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266546 [TBL] [Abstract][Full Text] [Related]
6. An innovative biomass-driven energy systems for green energy and freshwater production with less CO2 emission: Environmental and technical approaches. Bai Y; Lin H; M Abed A; Fayed M; Mahariq I; Salah B; Saleem W; Deifalla A Chemosphere; 2023 Sep; 334():139008. PubMed ID: 37230303 [TBL] [Abstract][Full Text] [Related]
7. Techno-economic optimization of a new waste-to-energy plant for electricity, cooling, and desalinated water using various biomass for emission reduction. Hai T; Ma X; Singh Chauhan B; Mahmoud S; Al-Kouz W; Tong J; Salah B Chemosphere; 2023 Oct; 338():139398. PubMed ID: 37406939 [TBL] [Abstract][Full Text] [Related]
8. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons. Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061 [TBL] [Abstract][Full Text] [Related]
9. A review of the techno-economic potential and environmental impact analysis through life cycle assessment of parabolic trough collector towards the contribution of sustainable energy. Saini P; Singh S; Kajal P; Dhar A; Khot N; Mohamed ME; Powar S Heliyon; 2023 Jul; 9(7):e17626. PubMed ID: 37449158 [TBL] [Abstract][Full Text] [Related]
10. Comparison of two newly suggested power, refrigeration, and hydrogen production, for moving towards sustainability schemes using improved solar-powered evolutionary algorithm optimization. Hai T; Abd El-Salam NM; Kh TI; Chaturvedi R; El-Shafai W; Farhang B Chemosphere; 2023 Sep; 336():139160. PubMed ID: 37327820 [TBL] [Abstract][Full Text] [Related]
11. Sourcing of Steam and Electricity for Carbon Capture Retrofits. Supekar SD; Skerlos SJ Environ Sci Technol; 2017 Nov; 51(21):12908-12917. PubMed ID: 28968494 [TBL] [Abstract][Full Text] [Related]
12. Use of high salinity water in a power plant by connecting a direct contact membrane distillation (DCMD) to a steam-injected gas turbine (STIG). Peymani A; Sadeghi J; Shahraki F; Samimi A Heliyon; 2023 Nov; 9(11):e21335. PubMed ID: 37954264 [TBL] [Abstract][Full Text] [Related]
13. Concentrating solar thermal power. Müller-Steinhagen H Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110433. PubMed ID: 23816910 [TBL] [Abstract][Full Text] [Related]
14. Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production. Zainul R; Basem A; J Alfaker M; Sharma P; Kumar A; Al-Bahrani M; Elawady A; Abbas M; Fooladi H; Pandey S Heliyon; 2024 Aug; 10(16):e35171. PubMed ID: 39253151 [TBL] [Abstract][Full Text] [Related]
15. Triple-renewable energy system for electricity production and water desalination. Abdelsalam E; Almomani F; Alnawafah H; Alrashed R Environ Sci Pollut Res Int; 2023 Sep; 30(44):98895-98906. PubMed ID: 36036347 [TBL] [Abstract][Full Text] [Related]
16. Technical, economic and environmental analysis of solar thermochemical production of drop-in fuels. Moretti C; Patil V; Falter C; Geissbühler L; Patt A; Steinfeld A Sci Total Environ; 2023 Nov; 901():166005. PubMed ID: 37541501 [TBL] [Abstract][Full Text] [Related]
17. Operating experiences with a molten carbonate fuel cell at Stuttgart-Möhringen wastewater treatment plant. Locher C; Meyer C; Steinmetz H Water Sci Technol; 2012; 65(5):789-94. PubMed ID: 22339011 [TBL] [Abstract][Full Text] [Related]
18. Least-cost targets and avoided fossil fuel capacity in India's pursuit of renewable energy. Deshmukh R; Phadke A; Callaway DS Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753476 [TBL] [Abstract][Full Text] [Related]
19. Assessment of renewable energy supply for green ports with a case study. Sadek I; Elgohary M Environ Sci Pollut Res Int; 2020 Feb; 27(5):5547-5558. PubMed ID: 31853847 [TBL] [Abstract][Full Text] [Related]
20. Electricity generation: options for reduction in carbon emissions. Whittington HW Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]