BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 34420242)

  • 1. Every protagonist has a sidekick: Structural aspects of human xeroderma pigmentosum-binding proteins in nucleotide excision repair.
    Feltes BC
    Protein Sci; 2021 Nov; 30(11):2187-2205. PubMed ID: 34420242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of xeroderma pigmentosum proteins architecture, mutations and post-translational modifications.
    Feltes BC; Bonatto D
    Mutat Res Rev Mutat Res; 2015; 763():306-20. PubMed ID: 25795128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of DNA binding by human factor xeroderma pigmentosum complementation group A (XPA) provides insight into its interactions with nucleotide excision repair substrates.
    Sugitani N; Voehler MW; Roh MS; Topolska-Woś AM; Chazin WJ
    J Biol Chem; 2017 Oct; 292(41):16847-16857. PubMed ID: 28860187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer-prone xeroderma pigmentosum vs. non-cancer-prone trichothiodystrophy.
    Boyle J; Ueda T; Oh KS; Imoto K; Tamura D; Jagdeo J; Khan SG; Nadem C; Digiovanna JJ; Kraemer KH
    Hum Mutat; 2008 Oct; 29(10):1194-208. PubMed ID: 18470933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XPA: A key scaffold for human nucleotide excision repair.
    Sugitani N; Sivley RM; Perry KE; Capra JA; Chazin WJ
    DNA Repair (Amst); 2016 Aug; 44():123-135. PubMed ID: 27247238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the structural features of the xeroderma pigmentosum proteins: Focus on mutations and knowledge gaps.
    Feltes BC
    Mutat Res Rev Mutat Res; 2022; 789():108416. PubMed ID: 35690419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xeroderma pigmentosum A homolog from
    Galande AA; Saijo M; Ghaskadbi SS; Ghaskadbi S
    J Biosci; 2021; 46():. PubMed ID: 34148871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclosporin A inhibits nucleotide excision repair via downregulation of the xeroderma pigmentosum group A and G proteins, which is mediated by calcineurin inhibition.
    Kuschal C; Thoms KM; Boeckmann L; Laspe P; Apel A; Schön MP; Emmert S
    Exp Dermatol; 2011 Oct; 20(10):795-9. PubMed ID: 21707758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xeroderma pigmentosum and molecular cloning of DNA repair genes.
    Boulikas T
    Anticancer Res; 1996; 16(2):693-708. PubMed ID: 8687116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide excision repair by mutant xeroderma pigmentosum group A (XPA) proteins with deficiency in interaction with RPA.
    Saijo M; Takedachi A; Tanaka K
    J Biol Chem; 2011 Feb; 286(7):5476-83. PubMed ID: 21148310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair.
    Sugasawa K; Ng JM; Masutani C; Iwai S; van der Spek PJ; Eker AP; Hanaoka F; Bootsma D; Hoeijmakers JH
    Mol Cell; 1998 Aug; 2(2):223-32. PubMed ID: 9734359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The xeroderma pigmentosum group E gene product DDB2 activates nucleotide excision repair by regulating the level of p21Waf1/Cip1.
    Stoyanova T; Yoon T; Kopanja D; Mokyr MB; Raychaudhuri P
    Mol Cell Biol; 2008 Jan; 28(1):177-87. PubMed ID: 17967871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein.
    Nishi R; Okuda Y; Watanabe E; Mori T; Iwai S; Masutani C; Sugasawa K; Hanaoka F
    Mol Cell Biol; 2005 Jul; 25(13):5664-74. PubMed ID: 15964821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of DDB2-DDB1 complex under different naturally-occurring mutants in Xeroderma Pigmentosum disease.
    Feltes BC; Pedebos C; Bonatto D; Verli H
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2579-2589. PubMed ID: 30251654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F.
    van Vuuren AJ; Appeldoorn E; Odijk H; Yasui A; Jaspers NG; Bootsma D; Hoeijmakers JH
    EMBO J; 1993 Sep; 12(9):3693-701. PubMed ID: 8253091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xeroderma Pigmentosa Group A (XPA), Nucleotide Excision Repair and Regulation by ATR in Response to Ultraviolet Irradiation.
    Musich PR; Li Z; Zou Y
    Adv Exp Med Biol; 2017; 996():41-54. PubMed ID: 29124689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The case for 8,5'-cyclopurine-2'-deoxynucleosides as endogenous DNA lesions that cause neurodegeneration in xeroderma pigmentosum.
    Brooks PJ
    Neuroscience; 2007 Apr; 145(4):1407-17. PubMed ID: 17184928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide excision repair of oxidised genomic DNA is not a source of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine.
    Evans MD; Mistry V; Singh R; Gackowski D; Różalski R; Siomek-Gorecka A; Phillips DH; Zuo J; Mullenders L; Pines A; Nakabeppu Y; Sakumi K; Sekiguchi M; Tsuzuki T; Bignami M; Oliński R; Cooke MS
    Free Radic Biol Med; 2016 Oct; 99():385-391. PubMed ID: 27585947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of site-specifically labelled fluorescent human XPA to investigate DNA binding dynamics during nucleotide excision repair.
    Kuppa S; Corless E; Caldwell CC; Spies M; Antony E
    Methods; 2024 Apr; 224():47-53. PubMed ID: 38387709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xeroderma pigmentosum genes and melanoma risk.
    Paszkowska-Szczur K; Scott RJ; Serrano-Fernandez P; Mirecka A; Gapska P; Górski B; Cybulski C; Maleszka R; Sulikowski M; Nagay L; Lubinski J; Dębniak T
    Int J Cancer; 2013 Sep; 133(5):1094-100. PubMed ID: 23436679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.